A Highly Selective and Sensitive Colorimetric Chemosensor for the Detection of Hydrogen Sulfide: A Real-time Application in Multiple platforms.


Journal

Photochemistry and photobiology
ISSN: 1751-1097
Titre abrégé: Photochem Photobiol
Pays: United States
ID NLM: 0376425

Informations de publication

Date de publication:
01 2022
Historique:
received: 02 05 2021
accepted: 10 08 2021
pubmed: 15 8 2021
medline: 23 4 2022
entrez: 14 8 2021
Statut: ppublish

Résumé

Calorimetric chemosensors are found to be advantageous sensing systems due to their simplicity and favorable responsive properties. Although some colorimetric probes have been reported to detect hydrogen sulfide (H

Identifiants

pubmed: 34389998
doi: 10.1111/php.13506
doi:

Substances chimiques

Fluorescent Dyes 0
Hydrogen Sulfide YY9FVM7NSN

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

141-149

Informations de copyright

© 2021 American Society for Photobiology.

Références

Schiffman, S. S., J. L. Bennett and J. H. Raymer (2001) Quantification of odors and odorants from swine operations in North Carolina. Agricult. Forest Meteorol. 108, 213-240.
Steve, W., H. R. Avery, S. W. Marshall, T. Kendall, T. Mansoureh, S. Leah and S. S. Schiffman (2008) Air pollution and odor in communities near industrial swine operations. Environ. Health Perspect. 116, 1362-1368.
Franco-Luesma, E. and V. Ferreira (2016) Formation and release of h2s, methanethiol, and dimethylsulfide during the anoxic storage of wines at room temperature. J. Agric. Food Chem. 64, 6317-6326.
Vela, E., P. Hernández-Orte, E. Franco-Luesma and V. Ferreira (2017) The effects of copper fining on the wine content in sulfur off-odors and on their evolution during accelerated anoxic storage. Food Chem. 231, 212-221.
Duan, N., S. Yang, H. Tian and B. Sun (2021) The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem. 358, 129839.
Cheng, X., J. Gu, Y. Pang, J. Liu, T. Xu, X. Li, Y. Hua, K. A. Newell, X.-F. Huang, Y. Yu and Y. Liu (2019) Tacrine-hydrogen sulfide donor hybrid ameliorates cognitive impairment in the aluminum chloride mouse model of alzheimer’s disease. ACS Chem. Neurosci. 10, 3500-3509.
Kamoun, P., M.-C. Belardinelli, A. Chabli, K. Lallouchi and B. Chadefaux-Vekemans (2003) Endogenous hydrogen sulfide overproduction in Down syndrome. Am. J Med. Genet. Part A 116A, 310-311.
Qian, L.-L., X.-Y. Liu, Q. Chai and R.-X. Wang (2018) Hydrogen sulfide in diabetic complications: focus on molecular mechanisms. Endocrine, Metab. Immune Disord. - Drug Targets 18, 470-476.
Sun, H.-J., Z.-Y. Wu, X.-W. Nie, X.-Y. Wang and J.-S. Bian (2021) Implications of hydrogen sulfide in liver pathophysiology: mechanistic insights and therapeutic potential. J. Adv. Res. 27, 127-135.
Sui, L., T. Yu, D. Zhao, X. Cheng, X. Zhang, P. Wang, Y. Xu, S. Gao, H. Zhao, Y. Gao and L. Huo (2020) In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S. J. Hazardous Mat. 385, 121570.
Wang, S., X. Liu and M. Zhang (2017) Reduction of Ammineruthenium(III) by sulfide enables in vivo electrochemical monitoring of free endogenous hydrogen sulfide. Anal. Chem. 89, 5382-5388.
Asif, M., A. Aziz, Z. Wang, G. Ashraf, J. Wang, H. Luo, X. Chen, F. Xiao and H. Liu (2019) Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal. Chem. 91, 3912-3920.
Xu, T., N. Scafa, L.-P. Xu, S. Zhou, K. A. Al-Ghanem, S. Mahboob, B. Fugetsu and X. Zhang (2016) Electrochemical hydrogen sulfide biosensors. Analyst 141, 1185-1195.
Paul, A., B. Schwind, C. Weinberger, M. Tiemann and T. Wagner (2019) Gas responsive nanoswitch: copper oxide composite for highly selective H2S detection. Adv. Funct. Mat. 29, 1904505.
Ullrich, S., S. K. Neef and H.-G. Schmarr (2018) Headspace solid-phase microextraction and gas chromatographic analysis of low-molecular-weight sulfur volatiles with pulsed flame photometric detection and quantification by a stable isotope dilution assay. J. Sep. Sci. 41, 899-909.
Yu, Y., G. Li, D. Wu, F. Zheng, X. Zhang, J. Liu, N. Hu, H. Wang and Y. Wu (2020) Determination of hydrogen sulfide in wines based on chemical-derivatization-triggered aggregation-induced emission by high-performance liquid chromatography with fluorescence detection. J. Agric. Food Chem. 68, 876-883.
Lynch, M. J. and B. R. Crane (2019) Design, validation, and application of an enzyme-coupled hydrogen sulfide detection assay. Biochemistry 58, 474-483.
Alvarez, M. T., C. Crespo and B. Mattiasson (2007) Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere 66, 1677-1683.
Gong, D., X. Zhu, Y. Tian, S.-C. Han, M. Deng, A. Iqbal, W. Liu, W. Qin and H. Guo (2017) A phenylselenium-substituted BODIPY fluorescent turn-off probe for fluorescence imaging of hydrogen sulfide in living cells. Anal. Chem. 89, 1801-1807.
Karakuş, E., M. Üçüncü and M. Emrullahoğlu (2016) Electrophilic cyanate as a recognition motif for reactive sulfur species: selective fluorescence detection of H2S. Anal. Chem. 88, 1039-1043.
Wang, M., Y. Song, P. Mu, X. Cai, Y. Lin and C.-L. Chen (2020) Peptoid-based programmable 2D nanomaterial sensor for selective and sensitive detection of H2S in live cells. ACS Appl. Bio Mater. 3, 6039-6048.
Jin, X., S. Wu, M. She, Y. Jia, L. Hao, B. Yin, L. Wang, M. Obst, Y. Shen, Y. Zhang and J. Li (2016) Novel fluorescein-based fluorescent probe for detecting H2S and its real applications in blood plasma and biological imaging. Anal. Chem. 88, 11253-11260.
Wu, Y., Q. Wang, T. Wu, W. Liu, H. Nan, S. Xu and Y. Shen (2018) Detection and imaging of hydrogen sulfide in lysosomes of living cells with activatable fluorescent quantum dots. ACS Appl. Mater. Interfaces 10, 43472-43481.
Kaushik, R., R. Sakla, A. Ghosh, G. T. Selvan, P. M. Selvakumar and D. A. Jose (2018) Selective detection of H2S by copper complex embedded in vesicles through metal indicator displacement approach. ACS Sens. 3, 1142-1148.
Li, H., Y. Fang, J. Yan, X. Ren, C. Zheng, B. Wu, S. Wang, Z. Li, H. Hua, P. Wang and D. Li (2020) Small-molecule fluorescent probes for H2S detection: advances and perspectives. TrAC Trends Analyt. Chem. 134, 116117.
Wu, S., X. Ma, Y. Wang, J. Zhou, X. Li and X. Wang (2021) A novel fluorescent BODIPY-based probe for detection of Cu2+ and H2S based on displacement approach. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 249, 119330.
Li, K.-B., W.-B. Qu, Q. Shen, S. Zhang, W. Shi, L. Dong and D.-M. Han (2020) 1,8-Naphthalimide-based dual-response fluorescent probe for highly discriminating detection of cys and H2S. Dyes Pigments 173, 107918.
Nandi, S., H. Reinsch and S. Biswas (2020) A vinyl functionalized mixed linker CAU-10 metal-organic framework acting as a fluorescent sensor for the selective detection of H2S and palladium(II). Micropor. Mesopo. Mat. 293, 109790.
Ma, C., C. Wei, X. Li, X. Zheng, B. Chen, M. Wang, P. Zhang and X. Li (2019) A mitochondria-targeted dual-reactable fluorescent probe for fast detection of H2S in living cells. Dyes Pigments 162, 624-631.
Zhao, Q., J. Kang, Y. Wen, F. Huo, Y. Zhang and C. Yin (2018) “Turn-on” fluorescent probe for detection of H2S and its applications in bioimaging. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 189, 8-12.
Wang, F., G. Xu, X. Gu, Z. Wang, Z. Wang, B. Shi, C. Lu, X. Gong and C. Zhao (2018) Realizing highly chemoselective detection of H2S in vitro and in vivo with fluorescent probes inside core-shell silica nanoparticles. Biomaterials 159, 82-90.
Zheng, H.-R., L.-Y. Niu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung and Q.-Z. Yang (2016) Cascade reaction-based fluorescent probe for detection of H2S with the assistance of CTAB micelles. Chinese Chem. Lett. 27, 1793-1796.
Palanisamy, S., L.-Y. Lee, Y.-L. Wang, Y.-J. Chen, C.-Y. Chen and Y.-M. Wang (2016) A water soluble and fast response fluorescent turn-on copper complex probe for H2S detection in zebra fish. Talanta 147, 445-452.
Kaushik, R., A. Ghosh and D. A. Jose (2016) Simple terpyridine based Cu(II)/Zn(II) complexes for the selective fluorescent detection of H2S in aqueous medium. J. Lumin. 171, 112-117.
Nandi, S., S. Banesh, V. Trivedi and S. Biswas (2018) A dinitro-functionalized metal-organic framework featuring visual and fluorogenic sensing of H2S in living cells, human blood plasma and environmental samples. Analyst 143, 1482-1491.
Cai, S., C. Liu, S. He, L. Zhao and X. Zeng (2020) Mitochondria-targeted fluorescent probe for imaging endogenous hydrogen sulfide in cellular antioxidant stress. Anal. Methods 12, 5061-5067.
Jiménez, D., R. Martínez-Máñez, F. Sancenón, J. V. Ros-Lis, A. Benito and J. Soto (2003) A new chromo-chemodosimeter selective for sulfide anion. J. Am. Chem. Soc. 125, 9000-9001.
El Sayed, S., M. Milani, M. Licchelli, R. Martínez-Máñez and F. Sancenón (2015) Hexametaphosphate-capped silica mesoporous nanoparticles containing cuii complexes for the selective and sensitive optical detection of hydrogen sulfide in water. Chem. - A. Eur. J. 21, 7002-7006.
Wang, L., X. Chen and D. Cao (2017) A nitroolefin functionalized DPP fluorescent probe for the selective detection of hydrogen sulfide. New J. Chem. 41, 3367-3373.
Naha, S., S.-P. Wu and S. Velmathi (2020) Naphthalimide based smart sensor for CN−/Fe3+ and H2S. Synthesis and application in RAW264.7 cells and zebrafish imaging. RSC Adv. 10, 8751-8759.
Katla, J. and S. Kanvah (2018) Styrylisoxazole-based fluorescent probes for the detection of hydrogen sulfide. Photochem. Photobiol. Sci. 17, 42-50.
Yang, L., Y. Zhang, X. Ren, B. Wang, Z. Yang, X. Song and W. Wang (2020) Fluorescent detection of dynamic H2O2/H2S redox event in living cells and organisms. Anal. Chem. 92, 4387-4394.
Li, S.-J., Y.-F. Li, H.-W. Liu, D.-Y. Zhou, W.-L. Jiang, J. Ou-Yang and C.-Y. Li (2018) A dual-response fluorescent probe for the detection of viscosity and H2S and its application in studying their cross-talk influence in mitochondria. Anal. Chem. 90, 9418-9425.
Lv, L., W. Luo and Q. Diao (2021) A novel ratiometric fluorescent probe for selective detection and imaging of H2S. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 246, 118959.
Liu, K., C. Liu, H. Shang, M. Ren and W. Lin (2018) A novel red light emissive two-photon fluorescent probe for hydrogen sulfide (H2S) in nucleolus region and its application for H2S detection in zebrafish and live mice. Sens. Actuators B: Chem. 256, 342-350.
Sun, Y., C. Li, X. Feng, C. Wang, N. Wang, J. Zhu, T. Wang and X. Cui (2021) Si-coumarin-based fluorescent probes for ultrafast monitoring H2S in vivo. Dyes Pigments 186, 109059.
Shi, X., C. Yin, Y. Wen and F. Huo (2019) A dual-sites fluorescent probe based on symmetric structure of naphthalimide derivative to detect H2S. Dyes Pigments 165, 38-43.
Muthusamy, S., K. Rajalakshmi, Q. Xu, Y. Chen, L. Zhao and W. Zhu (2020) An azido coumarin-quinoline conjugated fluorogenic dye: utilizing amide-iminol tautomerism for H2S detection in live MCF-7 cells. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 238, 118345.
Chen, B., J. Huang, H. Geng, L. Xuan, T. Xu, X. Li and Y. Han (2017) A new ESIPT-based fluorescent probe for highly selective and sensitive detection of hydrogen sulfide and its application in live-cell imaging. New J. Chem. 41, 1119-1123.
Lee, S., D.-B. Sung, J. S. Lee and M. S. Han (2020) A fluorescent probe for selective facile detection of H2S in serum based on an albumin-binding fluorophore and effective masking reagent. ACS Omega 5, 32507-32514.
Yang, L., Y. Su, Y. Geng, Y. Zhang, X. Ren, L. He and X. Song (2018) A triple-emission fluorescent probe for discriminatory detection of cysteine/homocysteine, glutathione/hydrogen sulfide, and thiophenol in living cells. ACS Sens. 3, 1863-1869.
Zhong, K., S. Zhou, X. Yan, X. Li, S. Hou, L. Cheng, X. Gao, Y. Li and L. Tang (2020) A simple H2S fluorescent probe with long wavelength emission: application in water, wine, living cells and detection of H2S gas. Dyes Pigments 174, 108049.
Hong, J., E. Zhou, S. Gong and G. Feng (2019) A red to near-infrared fluorescent probe featuring a super large Stokes shift for light-up detection of endogenous H2S. Dyes Pigm. 160, 787-793.
Zhao, X., Y. Li, Y. Jiang, B. Yang, C. Liu and Z. Liu (2019) A novel “turn-on” mitochondria-targeting near-infrared fluorescent probe for H2S detection and in living cells imaging. Talanta 197, 326-333.
Liu, Y., Y. Ding, J. Huang, X. Zhang, T. Fang, Y. Zhang, X. Zheng and X. Yang (2017) A benzothiazole-based fluorescent probe for selective detection of H2S in living cells and mouse hippocampal tissues. Dyes Pigments 138, 112-118.
Fang, T., X.-D. Jiang, C. Sun and Q. Li (2019) BODIPY-based naked-eye fluorescent on-off probe with high selectivity for H2S based on thiolysis of dinitrophenyl ether. Sens. Actuators B: Chem. 290, 551-557.
Peng, S., T. Zhong, T. Guo, D. Shu, D. Meng, H. Liu and D. Guo (2018) A novel fluorescent probe for selective detection of hydrogen sulfide in living cells. New J. Chem. 42, 5185-5192.
Guria, U. N., K. Maiti, S. S. Ali, S. K. Samanta, D. Mandal, R. Sarkar, P. Datta, A. K. Ghosh and A. K. Mahapatra (2018) Reaction-based bi-signaling chemodosimeter probe for selective detection of hydrogen sulfide and cellular studies. New J. Chem. 42, 5367-5375.
Qian, M., L. Zhang, Z. Pu, J. Xia, L. Chen, Y. Xia, H. Cui, J. Wang and X. Peng (2018) A NIR fluorescent probe for the detection and visualization of hydrogen sulfide using the aldehyde group assisted thiolysis of dinitrophenyl ether strategy. J. Mater. Chem. B 6, 7916-7925.
Xu, L., L. Ni, L. Sun, F. Zeng and S. Wu (2019) A fluorescent probe based on aggregation-induced emission for hydrogen sulfide-specific assaying in food and biological systems. Analyst 144, 6570-6577.
Zhao, Y., M. M. Cerda and M. D. Pluth (2019) Fluorogenic hydrogen sulfide (H2S) donors based on sulfenyl thiocarbonates enable H2S tracking and quantification. Chem. Sci. 10, 1873-1878.
Gong, S., E. Zhou, J. Hong and G. Feng (2019) Nitrobenzoxadiazole ether-based near-infrared fluorescent probe with unexpected high selectivity for H2S imaging in living cells and mice. Anal. Chem. 91, 13136-13142.
Zhang, J., G. Wen, W. Wang, K. Cheng, Q. Guo, S. Tian, C. Liu, H. Hu, Y. Zhang, H. Zhang, L. Wang and H. Sun (2020) Controllable cleavage of C-N bond-based fluorescent and photoacoustic dual-modal probes for the detection of H2S in living mice. Bio Mater, ACS Appl. 4, 2020-2025.
Ding, S., W. Feng and G. Feng (2017) Rapid and highly selective detection of H2S by nitrobenzofurazan (NBD) ether-based fluorescent probes with an aldehyde group. Sens. Actuators B: Chem. 238, 619-625.
Yi, L. and Z. Xi (2017) Thiolysis of NBD-based dyes for colorimetric and fluorescence detection of H2S and biothiols: design and biological applications. Org. Biomol. Chem. 15, 3828-3839.
Liu, G., H. Ge, R. Yin, L. Yu, C. Sun, W. Dong, Z. Sun, K. A. Alamry, H. M. Marwani and S. Wang (2020) Carbon dots tailored with a fluorophore for sensitive and selective detection of hydrogen sulfide based on a ratiometric fluorescence signal. Anal. Methods 12, 1617-1623.
Jiang, Y., X. Ji, C. Zhang, Z. Xi, L. Sun and L. Yi (2019) Dual-quenching NBD-based fluorescent probes for separate detection of H2S and Cys/Hcy in living cells. Org. Biomol. Chem. 17, 8435-8442.
Tang, Y. and G.-F. Jiang (2017) A novel two-photon fluorescent probe for hydrogen sulfide in living cells using an acedan-NBD amine dyad based on FRET process with high selectivity and sensitivity. New J. Chem. 41, 6769-6774.
Kaushik, R., A. Ghosh and D. Amilan Jose (2017) Recent progress in hydrogen sulphide (H2S) sensors by metal displacement approach. Coord. Chem. Rev. 347, 141-157.
Hartle, M. D., M. R. Tillotson, J. S. Prell and M. D. Pluth (2017) Spectroscopic investigation of the reaction of metallo-protoporphyrins with hydrogen sulfide. J Inorg. Biochem. 173, 152-157.
Munusamy, S. and S. Kulathu Iyer (2016) A chiral (S)-BINOL based fluorescent sensor for the recognition of Fe(III) and cascade discrimination of α-amino acids. Tetrahedron Asymmetry 27, 492-497.
Muthukumar, V., S. Munusamy, K. Thirumoorthy, S. Sawminathan and S. KulathuIyer (2019) Fused pyrazole-phenanthridine based dyads: synthesis, photo-physical and theoretical studies, and live cell pH imaging. RSC Adv. 9, 38687-38696.
Munusamy, S., V. P. Muralidharan and S. K. Iyer (2017) Enantioselective recognition of unmodified amino acids by ligand-displacement assays with in situ generated 1:1 Cu(II)- BINOL imidazole complex. Sens. Actuators B: Chem. 250, 244-249.
Munusamy, S. K., K. Thirumoorthy, V. P. Muralidharan, U. Balijapalli and S. K. Iyer (2017) Enantioselective fluorescent sensing of chiral carboxylic acid by engaging boronic acid and BINOL. Sens. Actuators B: Chem. 244, 175-181.
Saravanakumar, M., B. Umamahesh, R. Selvakumar, J. Dhanapal, S. K. Ashok kumar and K. I. Sathiyanarayanan (2020) A colorimetric and ratiometric fluorescent sensor for biogenic primary amines based on dicyanovinyl substituted phenanthridine conjugated probe. Dyes Pigments 178, 108346.
Sathiyanarayanan, K. I., N. S. Karthikeyan, P. G. Aravindan, S. Shanthi, R. S. Rathore and C. W. Lee (2009) Dual behavior of 2-tetralone: A new approach for the synthesis of 5-aryl-7,8,13,14-tetrahydrodibenzo[a, i]phenanthridine. J. Heterocycl. Chemist. 46, 1142-1144.
Yu, T., X. Cheng, X. Zhang, L. Sui, Y. Xu, S. Gao, H. Zhao and L. Huo (2015) Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays. J. Mater. Chem. A 3, 11991-11999.

Auteurs

Dhanapal Jothi (D)

Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.

Sathishkumar Munusamy (S)

Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

Sathiyanarayanan Kulathu Iyer (S)

Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.

Articles similaires

H

Jiekai Sun, Xu Wang, Ye Gao et al.
1.00
Animals Anti-Bacterial Agents Hydrogen Sulfide Mice Pseudomonas aeruginosa

Molecular probes for tracking lipid droplet membrane dynamics.

Lingxiu Kong, Qingjie Bai, Cuicui Li et al.
1.00
Lipid Droplets Molecular Probes Humans Membrane Proteins Animals
Colorimetry Captopril Humans Alloys Limit of Detection
Humans Neurons Microscopy, Fluorescence, Multiphoton Capsules Polymers

Classifications MeSH