Genetic diversity in a long-lived mammal is explained by the past's demographic shadow and current connectivity.
bottleneck
connectivity
conservation
genetic diversity
isolation-by-distance
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
revised:
06
08
2021
received:
14
11
2018
accepted:
11
08
2021
pubmed:
18
8
2021
medline:
21
10
2021
entrez:
17
8
2021
Statut:
ppublish
Résumé
Within-species genetic diversity is crucial for the persistence and integrity of populations and ecosystems. Conservation actions require an understanding of factors influencing genetic diversity, especially in the context of global change. Both population size and connectivity are factors greatly influencing genetic diversity; the relative importance of these factors can, however, change through time. Hence, quantifying the degree to which population size or genetic connectivity are shaping genetic diversity, and at which ecological time scale (past or present), is challenging, yet essential for the development of efficient conservation strategies. In this study, we estimated the genetic diversity of 42 colonies of Rhinolophus hipposideros, a long-lived mammal vulnerable to global change, sampling locations spanning its continental northern range. Here, we present an integrative approach that disentangles and quantifies the contribution of different connectivity measures in addition to contemporary colony size and historic bottlenecks in shaping genetic diversity. In our study, the best model explained 64% of the variation in genetic diversity. It included historic bottlenecks, contemporary colony size, connectivity and a negative interaction between the latter two. Contemporary connectivity explained most genetic diversity when considering a 65 km radius around the focal colonies, emphasizing the large geographic scale at which the positive impact of connectivity on genetic diversity is most profound and hence, the minimum scale at which conservation should be planned. Our results highlight that the relative importance of the two main factors shaping genetic diversity varies through time, emphasizing the relevance of disentangling them to ensure appropriate conservation strategies.
Banques de données
Dryad
['10.5061/dryad.27q46m2']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5048-5063Informations de copyright
© 2021 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Références
Allendorf, F. W., Luikart, G. H., & Aitken, S. N. (2012). Conservation and the genetics of populations. , 2nd ed. John Wiley & Sons.
Armbruster, P., & Reed, D. (2005). Inbreeding depression in benign and stressful environments. Heredity, 95, 235-242. https://doi.org/10.1038/sj.hdy.6800721
Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M., & Turlure, C. (2013). Individual dispersal, landscape connectivity and ecological networks. Biological Reviews, 88(2), 310-326. https://doi.org/10.1111/brv.12000
Beaumont, M. A. (1999). Detecting population expansion and decline using microsatellites. Genetics, 153(4), 2013-2029. https://doi.org/10.1093/genetics/153.4.2013
Benson, J. F., Mahoney, P. J., Sikich, J. A., Serieys, L. E. K., Pollinger, J. P., Ernest, H. B., & Riley, S. P. D. (2016). Interactions between demography, genetics, and landscape connectivity increase extinction probability for a small population of large carnivores in a major metropolitan area. Proceedings of the Royal Society B: Biological Sciences, 283(1837), 20160957. https://doi.org/10.1098/rspb.2016.0957
Biedermann, M., Karst, I., & Schorcht, W. (2012). Kleine Hufeisennase Rhinolophus hipposideros. In J. Tress, M. Biedermann, H. Geiger, J. Prüger, W. Schorcht, C. Tress, & K.-P. Welsch (Eds.), Fledermäuse in Thüringen (pp. 245-266). Jena: Thüringer Landesanstalt für Umwelt und Geologie.
Blomqvist, D., Pauliny, A., Larsson, M., & Flodin, L.-Å. (2010). Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population. BMC Evolutionary Biology, 10(1), 33. https://doi.org/10.1186/1471-2148-10-33
Bontadina, F. (2002). Conservation ecology in the horseshoe bats Rhinolophus ferrumequinum and Rhinolophus hipposideros (PhD thesis). Université de Berne, Berne.
Bontadina, F., Arlettaz, R., Fankhauser, T., Lutz, M., Mühlethaler, E., Theiler, A., & Zingg, P. E. (2000). The lesser horseshoe bat Rhinolophus hipposideros in Switzerland: Present status and research recommendations. Le Rhinolophe, 14, 69-83.
Bontadina, F., Hotz, T., & Märki, K. (2006). Die Kleine Hufeisennase im Aufwind. Haupt Verlag.
Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434-455. https://doi.org/10.2307/1390675
Broquet, T., Angelone, S., Jaquiery, J., Joly, P., Lena, J.-P., Leng, T., Plenet, S., Luquet, E., Perrin, N. (2010). Genetic bottlenecks driven by population disconnection. Conservation Biology, 24(6), 1596-1605. https://doi.org/10.1111/j.1523-1739.2010.01556.x
Broquet, T., Ménard, N., & Petit, E. (2007). Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conservation Genetics, 8, 249-260. https://doi.org/10.1007/s10592-006-9146-5
Broquet, T., Ray, N., Petit, E., Fryxell, J. M., & Burel, F. (2006). Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecology, 21(6), 877-889. https://doi.org/10.1007/s10980-005-5956-y
Burland, T. M., & Worthington Wilmer, J. (2001). Seeing in the dark: Molecular approaches to the study of bat populations. Biological Reviews, 76(3), 389-409. https://doi.org/10.1017/S1464793101005747
Chaine, A. S., & Clobert, J. (2012). Dispersal. In U. Candolin, & B. B. M. Wong (Eds.), Behavioral responses to a changing world (1st ed., pp. 64-79). Oxford University Press.
Chikhi, L., Sousa, V. C., Luisi, P., Goossens, B., & Beaumont, M. A. (2010). The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics, 186(3), 983-995. PMC (PMC2975287). https://doi.org/10.1534/genetics.110.118661
Corine Land Cover (CLC) (2012). Corine Land Cover (CLC). European Environment Agency. Retrieved from http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/view
Council Directive 79/117/EEC., Pub. L. No. Official Journal L 033, 08/02/1979 P. 0036-0040, 79/117/EEC (1978).
Delignette-Muller, M. L., & Dutang, C. (2015). fitdistrplus: An R Package for fitting distributions. Journal of Statistical Software, 64(4), 1-34.
DeWoody, J. A., Harder, A. M., Mathur, S., & Willoughby, J. R. (2021). The long-standing significance of genetic diversity in conservation. Molecular Ecology, 30(17), 4147-4154. http://dx.doi.org/10.1111/mec.16051
Dool, S. E., Puechmaille, S. J., Dietz, C., Juste, J., Ibáñez, C., Hulva, P., Roué, S. G., Petit, E. J., Jones, G., Russo, D., Toffoli, R., Viglino, A., Martinoli, A., & Rossiter, S. J., Teeling, E. C. (2013). Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: Evidence from multiple genetic markers. Molecular Ecology, 22(15), 4055-4070. https://doi.org/10.1111/mec.12373
Dool, S. E., Puechmaille, S. J., Kelleher, C., McAney, K., & Teeling, E. C. (2016). The effects of human-mediated habitat fragmentation on a sedentary woodland-associated species (Rhinolophus hipposideros) at its range margin. Acta Chiropterologica, 18(2), 377-393. https://doi.org/10.3161/15081109ACC2016.18.2.006
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust demographic inference from genomic and SNP data. PLoS Genetics, 9(10), e1003905. PMC (PMC3812088). https://doi.org/10.1371/journal.pgen.1003905
Fairon, J. (1967). Vingt-cinq années de baguage des Cheiroptères en Belgique. Bulletin De L’institut Royal Des Sciences Naturelles De Belgique - Bulletin Van Het Koninklijk Belgisch Instituut Voor Natuurwetenschappen, 43(28), 1-37.
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics, 4th ed. Longman.
Faurby, S., & Pertoldi, C. (2012). The consequences of the unlikely but critical assumption of stepwise mutation in the population genetic software, MSVAR. Evolutionary Ecology Research, 14(7), 859-879.
Forsman, A. (2014). Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proceedings of the National Academy of Sciences, 111(1), 302-307. https://doi.org/10.1073/pnas.1317745111
Fox, J. (2003). Effect displays in R for generalised linear models. Journal of Statistical Software, 8(15), 1-27.
Frankel, O. H., & Soulé, M. E. (1981). Conservation and evolution. Cambridge University Press.
Frankham, R. (1995). Effective population size/adult population size ratios in wildlife: A review. Genetics Research, 66, 95-107. Cambridge Core. https://doi.org/10.1017/S0016672300034455
Frankham, R. (2005). Genetics and extinction. Biological Conservation, 126(2), 131-140. https://doi.org/10.1016/j.biocon.2005.05.002
Frankham, R. (2015). Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24(11), 2610-2618. https://doi.org/10.1111/mec.13139
Fritze, M., & Puechmaille, S. J. (2018). Identifying unusual mortality events in bats: A baseline for bat hibernation monitoring and white-nose syndrome research. Mammal Review, 48(3), 224-228. https://doi.org/10.1111/mam.12122
Froidevaux, J. S. P., Boughey, K. L., Barlow, K. E., & Jones, G. (2017). Factors driving population recovery of the greater horseshoe bat (Rhinolophus ferrumequinum) in the UK: implications for conservation. Biodiversity and Conservation, 26(7), 1601-1621. https://doi.org/10.1007/s10531-017-1320-1
Gaisler, J. (1966). Reproduction in the lesser horseshoe bat (Rhinolophus hipposideros hipposideros Bechstein, 1800). Bijdragen Tot De Dierkunde, 36, 45-64. https://doi.org/10.1163/26660644-03601003
Garza, J. C., & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10(2), 305-318. https://doi.org/10.1046/j.1365-294X.2001.01190.x
Girod, C., Vitalis, R., Leblois, R., & Fréville, H. (2011). Inferring population decline and expansion from microsatellite data: A simulation-based evaluation of the Msvar method. Genetics, 188(1), 165-179. https://doi.org/10.1534/genetics.110.121764
González-Suárez, M., & Revilla, E. (2013). Variability in life-history and ecological traits is a buffer against extinction in mammals. Ecology Letters, 16(2), 242-251. https://doi.org/10.1111/ele.12035
Goudet, J. (2005). Hierfstat, a package for r to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5(1), 184-186. https://doi.org/10.1111/j.1471-8286.2004.00828.x
Goudet, J., & Jombart, T. (2015). hierfstat: Estimation and tests of hierarchical F-statistics (Version 0.04-22). Retrieved from https://CRAN.R-project.org/package=hierfstat
Grusea, S., Rodríguez, W., Pinchon, D., Chikhi, L., Boitard, S., & Mazet, O. (2019). Coalescence times for three genes provide sufficient information to distinguish population structure from population size changes. Journal of Mathematical Biology, 78, 189-224. https://doi.org/10.1007/s00285-018-1272-4
Gurevitch, J., Fox, G. A., Fowler, N. L., & Graham, C. H. (2016). Landscape demography: Population change and its drivers across spatial scales. The Quarterly Review of Biology, 91(4), 459-485. https://doi.org/10.1086/689560
Heymer, A. (1964). Résultats du baguage de chauves-souris dans les Pyrénées Orientales de 1945 à 1959. Vie Et Milieu, 15, 765-799.
Hijmans, R. J. (2017). Geosphere: Spherical Trigonometry. R package version 1.5-7. Retrieved from https://CRAN.R-project.org/package=geosphere
Ishiyama, N., Koizumi, I., Yuta, T., & Nakamura, F. (2015). Differential effects of spatial network structure and scale on population size and genetic diversity of the ninespine stickleback in a remnant wetland system. Freshwater Biology, 60(4), 733-744. https://doi.org/10.1111/fwb.12525
Jan, P.-L., Lehnen, L., Besnard, A.-L., Kerth, G., Biedermann, M., Schorcht, W., Petit, E. J., Le Gouar, P., Puechmaille, S. J. (2019). Range expansion is associated with increased survival and fecundity in a long-lived bat species. Proceedings of the Royal Society B: Biological Sciences, 286(1906), 20190384. https://doi.org/10.1098/rspb.2019.0384
Jeffreys, H. (2000). Theory of probability. , 3rd ed. Oxford Classic Texts in the Physical Sciences.
Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. https://doi.org/10.1093/bioinformatics/btn129
Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. PMC (PMC3198581). https://doi.org/10.1093/bioinformatics/btr521
Keeley, A. T. H., Beier, P., Keeley, B. W., & Fagan, M. E. (2017). Habitat suitability is a poor proxy for landscape connectivity during dispersal and mating movements. Landscape and Urban Planning, 161, 90-102. https://doi.org/10.1016/j.landurbplan.2017.01.007
Kerth, G., & Petit, E. (2005). Colonization and dispersal in a social species, the Bechstein’s bat (Myotis bechsteinii). Molecular Ecology, 14(13), 3943-3950. https://doi.org/10.1111/j.1365-294X.2005.02719.x
Leblois, R., Pudlo, P., Néron, J., Bertaux, F., Reddy Beeravolu, C., Vitalis, R., & Rousset, F. (2014). Maximum-Likelihood inference of population size contractions from microsatellite data. Molecular Biology and Evolution, 31, 2805-2823. https://doi.org/10.1093/molbev/msu212
Lehnen, L., Jan, P.-L., Besnard, A.-L., Fourcy, D., Kerth, G., Biedermann, M., Nyssen, P., Schorcht, W., & Petit, E. J., Puechmaille, S. J. (2020). Data from: Genetic diversity in a long-lived mammal is explained by the past’s demographic shadow and current connectivity, v2, Dryad Digital Repository, Dataset. https://doi.org/10.5061/dryad.27q46m2
Lehnen, L., Schorcht, W., Karst, I., Biedermann, M., Kerth, G., & Puechmaille, S. J. (2018). Using Approximate Bayesian Computation to infer sex ratios from acoustic data. PLoS One, 13(6), e0199428. https://doi.org/10.1371/journal.pone.0199428
Lewin, H. A., Robinson, G. E., Kress, W. J., Baker, W. J., Coddington, J., Crandall, K. A., Durbin, R., Edwards, S. V., Forest, F., Gilbert, M. T. P., Goldstein, M. M., Grigoriev, I. V., Hackett, K. J., Haussler, D., Jarvis, E. D., Johnson, W. E., Patrinos, A., Richards, S., Castilla-Rubio, J. C., … Zhang, G. (2018). Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences, 115(17), 4325-4333. https://doi.org/10.1073/pnas.1720115115
Lowe, W. H., & Allendorf, F. W. (2010). What can genetics tell us about population connectivity? Molecular Ecology, 19(15), 3038-3051. https://doi.org/10.1111/j.1365-294X.2010.04688.x
Lynch, M., Conery, J., & Burger, R. (1995). Mutation accumulation and the extinction of small populations. The American Naturalist, 146(4), 489-518. https://doi.org/10.1086/285812
Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape genetics: Combining landscape ecology and population genetics. Trends in Ecology & Evolution, 18(4), 189-197. https://doi.org/10.1016/S0169-5347(03)00008-9
Markert, J. A., Champlin, D. M., Gutjahr-Gobell, R., Grear, J. S., Kuhn, A., McGreevy, T. J., Roth, A., Bagley, M. J., Nacci, D. E. (2010). Population genetic diversity and fitness in multiple environments. BMC Evolutionary Biology, 10(1), 205. https://doi.org/10.1186/1471-2148-10-205
Marnell, F., & Presetnik, P. (2010). Protection of overground roosts for bats (particularly roosts in buildings of cultural heritage importance). UNEP / EUROBATS Secretariat. Retrieved from http://www.eurobats.org/sites/default/files/documents/publications/publication_series/pubseries_no4_english_2nd_edition.pdf
Moilanen, A., & Nieminen, M. (2002). Simple connectivity measures in spatial ecology. Ecology, 83(4), 1131-1145.
Nathan, R., Klein, E. K., Robledo-Arnuncio, J. J., & Revilla, E. (2012). Dispersal kernels. In J. Clobert, M. Baguette, T. G. Benton, & J. M. Bullock (Eds.), Dispersal Ecology and Evolution (pp. 187-210). Oxford University Press.
Neaves, L. E., Eales, J., Whitlock, R., Hollingsworth, P. M., Burke, T., & Pullin, A. S. (2015). The fitness consequences of inbreeding in natural populations and their implications for species conservation - a systematic map. Environmental Evidence, 4, 5. https://doi.org/10.1186/s13750-015-0031-x
O’Grady, J. J., Brook, B. W., Reed, D. H., Ballou, J. D., Tonkyn, D. W., & Frankham, R. (2006). Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biological Conservation, 133(1), 42-51. https://doi.org/10.1016/j.biocon.2006.05.016
O’Shea, T. J., Ellison, L. E., & Stanley, T. R. (2011). Adult survival and population growth rate in Colorado big brown bats (Eptesicus fuscus). Journal of Mammalogy, 92(2), 433-443. https://doi.org/10.1644/10-MAMM-A-162.1
Ohlendorf, B. (1997). Verbreitung und Bestandssituation der Kleinen Hufeisennase (Rhinolophus hipposideros) und der Großen Hufeisennase (Rhinolophus ferrumequinum) in Europa. In B. Ohlendorf (Ed.), Zur Situation der Hufeisennasen in Europa-Contributions à la situation des Rhinolophides dans l’Europe-On situation of the Rhinolophides in Europe (pp. 8-11). IFA Verlag GmbH.
Pacioni, C., Hunt, H., Allentoft, M. E., Vaughan, T. G., Wayne, A. F., Baynes, A., Haouchar, D., Dortch, J., Bunce, M. (2015). Genetic diversity loss in a biodiversity hotspot: Ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Molecular Ecology, 24(23), 5813-5828. https://doi.org/10.1111/mec.13430
Pelletier, A., Obbard, M. E., Harnden, M., McConnell, S., Howe, E. J., Burrows, F. G., White, B. N., Kyle, C. J. (2017). Determining causes of genetic isolation in a large carnivore (Ursus americanus) population to direct contemporary conservation measures. PLoS One, 12(2), e0172319, PMC (PMC5325280). https://doi.org/10.1371/journal.pone.0172319
Perrier, C., Ferchaud, A.-L., Sirois, P., Thibault, I., & Bernatchez, L. (2017). Do genetic drift and accumulation of deleterious mutations preclude adaptation? Empirical investigation using RADseq in a northern lacustrine fish. Molecular Ecology, 26(22), 6317-6335. https://doi.org/10.1111/mec.14361
Polechová, J. (2018). Is the sky the limit? On the expansion threshold of a species’ range. PLOS Biology, 16(6), e2005372. https://doi.org/10.1371/journal.pbio.2005372
Puechmaille, S. J., & Petit, E. J. (2007). Empirical evaluation of non-invasive capture-mark-recapture estimation of population size based on a single sampling session. Journal of Applied Ecology, 44(4), 843-852. https://doi.org/10.1111/j.1365-2664.2007.01321.x
R Core Team (2017). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from http://cran.r-project.org
Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
Rebelo, H., Tarroso, P., & Jones, G. (2010). Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16(2), 561-576. https://doi.org/10.1111/j.1365-2486.2009.02021.x
Reiter, G. (2004). The importance of woodland for Rhinolophus hipposideros (Chiroptera, Rhinolophidae) in Austria. Mammalia, 68(4), 403-410. https://doi.org/10.1515/mamm.2004.040
Reiter, G., Pölzer, E., Mixanig, H., Bontadina, F., & Hüttmeir, U. (2013). Impact of landscape fragmentation on a specialised woodland bat, Rhinolophus hipposideros. Mammalian Biology - Zeitschrift Für Säugetierkunde, 78(4), 283-289. https://doi.org/10.1016/j.mambio.2012.11.003
Reusch, T. B. H., Ehlers, A., Hämmerli, A., & Worm, B. (2005). Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2826-2831. https://doi.org/10.1073/pnas.0500008102
Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145(4), 1219-1228.
Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W., & Hanski, I. (1998). Inbreeding and extinction in a butterfly metapopulation. Nature, 392(6675), 491-494. https://doi.org/10.1038/33136
Scheepens, J. F., Rauschkolb, R., Ziegler, R., Schroth, V., & Bossdorf, O. (2017). Genotypic diversity and environmental variability affect the invasibility of experimental plant populations. Oikos, 127(4), 570-578. https://doi.org/10.1111/oik.04818
Shirley, M. H., & Austin, J. D. (2017). Did late pleistocene climate change result in parallel genetic structure and demographic bottlenecks in sympatric Central African crocodiles, Mecistops and Osteolaemus? Molecular Ecology, 26(22), 6463-6477. https://doi.org/10.1111/mec.14378
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. https://doi.org/10.1126/science.1259855
Storz, J. F., & Beaumont, M. A. (2002). Testing for genetic evidence of population expansion and contraction; an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution, 56(1), 154-166. https://doi.org/10.1111/j.0014-3820.2002.tb00857.x
Szűcs, M., Melbourne, B. A., Tuff, T., Weiss-Lehman, C., & Hufbauer, R. A. (2017). Genetic and demographic founder effects have long-term fitness consequences for colonising populations. Ecology Letters, 20(4), 436-444. https://doi.org/10.1111/ele.12743
Taylor, P. (2016). Rhinolophus hipposideros. The IUCN Red List of Threatened Species 2016. Retrieved October 6, 2017, from http://www.iucnredlist.org/details/19518/0 website: https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T19518A21972794.en
Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68(3), 571-573. JSTOR. https://doi.org/10.2307/3544927
Tischendorf, L., & Fahrig, L. (2003). On the usage and measurement of landscape connectivity. Oikos, 90(1), 7-19. https://doi.org/10.1034/j.1600-0706.2000.900102.x
Tournant, P. (2013). Impact du paysage sur la distribution spatiale et génétique des colonies de petits rhinolophes (PhD Thesis). Université de Franche-Comté.
Tress, J., Biedermann, M., Geiger, H., Prüger, J., Schorcht, W., Tress, C., & Welsch, K.-P. (2012). In J. Tress (Ed.), Fledermäuse in Thüringen 2nd ed., (pp. 1-653). Jena: Thüringer Landesanstalt für Umwelt und Geologie.
Van der Meij, T., Van Strien, A. J., Haysom, K. A., Dekker, J., Russ, J., Biala, K., Jansen, E., Langton, S., Kurali, A., Limpens, H., Meschede, A., Petersons, G., Presetnik, P., Prüger, J., Reiter, G., Rodrigues, L., Schorcht, W., Uhrin, M., Vintulis, V. (2015). Return of the bats? A prototype indicator of trends in European bat populations in underground hibernacula. Mammalian Biology, 80(3), 170-177. https://doi.org/10.1016/j.mambio.2014.09.004
Vandewoestijne, S., Schtickzelle, N., & Baguette, M. (2008). Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biology, 6(1), 46. https://doi.org/10.1186/1741-7007-6-46
von Luxburg, U., & Franz, V. (2009). A geometric approach to confidence sets for ratios: Fieller’s theorem, generalizations, and bootstrap. Statistica Sinica, 19, 1095-1117.
Waples, R. S., & Gaggiotti, O. (2006). INVITED REVIEW: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology, 15(6), 1419-1439. https://doi.org/10.1111/j.1365-294X.2006.02890.x
Watson, D. M., Doerr, V. A. J., Banks, S. C., Driscoll, D. A., van der Ree, R., Doerr, E. D., & Sunnucks, P. (2017). Monitoring ecological consequences of efforts to restore landscape-scale connectivity. Biological Conservation, 206, 201-209. https://doi.org/10.1016/j.biocon.2016.12.032
Westemeier, R., Brawn, J., Simpson, S., Esker, T., Jansen, R., Walk, J., Kershner, E. L., Bouzat, J. L., Paige, K. (1998). Tracking the long-term decline and recovery of an isolated population. Science, 282, 1695-1698. https://doi.org/10.1126/science.282.5394.1695
Williamson-Natesan, E. G. (2005). Comparison of methods for detecting bottlenecks from microsatellite loci. Conservation Genetics, 6(4), 551-562. https://doi.org/10.1007/s10592-005-9009-5
Zarzoso-Lacoste, D., Jan, P., Lehnen, L., Girard, T., Besnard, A., Puechmaille, S. J., & Petit, E. J. (2018). Combining noninvasive genetics and a new mammalian sex-linked marker provides new tools to investigate population size, structure and individual behaviour: An application to bats. Molecular Ecology Resources, 18(2), 217-228. https://doi.org/10.1111/1755-0998.12727
Zarzoso-Lacoste, D., Jan, P., Lehnen, L., Girard, T., Besnard, A., Puechmaille, S. J., & Petit, E. J. (2020). Corrigendum. Molecular Ecology Resources, 20(6), 1787. https://doi.org/10.1111/1755-0998.13254