Enhancing the population of the encounter complex affects protein complex formation efficiency.
electrostatic interactions
encounter complex
protein-protein interactions
Journal
The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
revised:
08
07
2021
received:
09
03
2021
accepted:
16
08
2021
pubmed:
18
8
2021
medline:
19
2
2022
entrez:
17
8
2021
Statut:
ppublish
Résumé
Optimal charge distribution is considered to be important for efficient formation of protein complexes. Electrostatic interactions guide encounter complex formation that precedes the formation of an active protein complex. However, disturbing the optimized distribution by introduction of extra charged patches on cytochrome c peroxidase does not lead to a reduction in productive encounters with its partner cytochrome c. To test whether a complex with a high population of encounter complex is more easily affected by suboptimal charge distribution, the interactions of cytochrome c mutant R13A with wild-type cytochrome c peroxidase and a variant with an additional negative patch were studied. The complex of the peroxidase and cytochrome c R13A was reported to have an encounter state population of 80%, compared to 30% for the wild-type cytochrome c. NMR analysis confirms the dynamic nature of the interaction and demonstrates that the mutant cytochrome c samples the introduced negative patch. Kinetic experiments show that productive complex formation is fivefold to sevenfold slower at moderate and high ionic strength values for cytochrome c R13A but the association rate is not affected by the additional negative patch on cytochrome c peroxidase, showing that the total charge on the protein surface can compensate for less optimal charge distribution. At low ionic strength (44 mm), the association with the mutant cytochrome c reaches the same high rates as found for wild-type cytochrome c, approaching the diffusion limit.
Identifiants
pubmed: 34403572
doi: 10.1111/febs.16159
pmc: PMC9293183
doi:
Substances chimiques
Multiprotein Complexes
0
Cytochrome-c Peroxidase
EC 1.11.1.5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
535-548Informations de copyright
© 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Références
Biochemistry. 1990 Jul 31;29(30):6994-7003
pubmed: 2171638
Biochemistry. 1991 May 21;30(20):4953-62
pubmed: 1645185
Biochemistry. 1999 Apr 6;38(14):4480-92
pubmed: 10194370
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1379-84
pubmed: 20080627
Biochemistry. 2000 May 9;39(18):5355-65
pubmed: 10820006
Biophys Chem. 2014 Feb;186:3-12
pubmed: 24070540
Biochemistry. 2021 Mar 16;60(10):747-755
pubmed: 33646750
Nat Commun. 2015 May 06;6:7073
pubmed: 25944250
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1840-E1847
pubmed: 28223532
Biochemistry. 2008 Mar 4;47(9):2766-75
pubmed: 18232645
Protein Sci. 1994 Nov;3(11):2104-14
pubmed: 7703857
Biochemistry. 1994 Jul 26;33(29):8686-93
pubmed: 8038158
Science. 1994 Sep 16;265(5179):1693-6
pubmed: 8085152
Biochemistry. 2015 Aug 11;54(31):4845-54
pubmed: 26212209
Chem Rev. 2009 Mar 11;109(3):839-60
pubmed: 19196002
J Mol Biol. 2009 Jan 23;385(3):1003-13
pubmed: 19026661
J Biomol Struct Dyn. 2020 Oct;38(16):4883-4894
pubmed: 31709918
Angew Chem Int Ed Engl. 2020 Dec 14;59(51):23239-23243
pubmed: 32827196
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
Curr Opin Struct Biol. 2013 Dec;23(6):911-8
pubmed: 23932200
Biochem Biophys Res Commun. 1988 Feb 29;151(1):429-34
pubmed: 2831888
Science. 1992 Dec 11;258(5089):1748-55
pubmed: 1334573
J Mol Biol. 1988 Jan 20;199(2):295-314
pubmed: 2832611
Structure. 2018 Jun 5;26(6):887-893.e2
pubmed: 29779788
Biochemistry. 2007 Jul 17;46(28):8263-72
pubmed: 17580971
Chem Rev. 2018 Feb 28;118(4):1691-1741
pubmed: 29319301
Biochem Soc Trans. 2012 Apr;40(2):415-8
pubmed: 22435822
J Mol Biol. 2001 Mar 9;306(5):1139-55
pubmed: 11237623
Biochemistry. 1984 Aug 28;23(18):4122-8
pubmed: 6091738
J Phys Chem B. 1998 Apr 30;102(18):3586-616
pubmed: 24889800
J Am Chem Soc. 2008 May 21;130(20):6395-403
pubmed: 18439013
Biophys J. 2009 May 20;96(10):4237-48
pubmed: 19450494
J Am Chem Soc. 2010 Aug 25;132(33):11487-95
pubmed: 20672804
J Am Chem Soc. 2007 Oct 31;129(43):12954-5
pubmed: 17918946
Protein Sci. 2018 Jan;27(1):112-128
pubmed: 28836357
Biochemistry. 2001 Jun 19;40(24):7069-76
pubmed: 11401551
Biochemistry. 2003 Jun 17;42(23):7068-76
pubmed: 12795602
Proteins. 1988;4(2):148-56
pubmed: 3227015
Biochim Biophys Acta. 1983 Mar 30;743(3):408-21
pubmed: 6299363
FEBS Lett. 2014 May 21;588(10):1873-8
pubmed: 24726731
J Am Chem Soc. 2010 Jan 13;132(1):241-7
pubmed: 19961227
Biochemistry. 1990 Oct 2;29(39):9150-9
pubmed: 2176845
Biochemistry. 1995 Aug 8;34(31):9985-90
pubmed: 7632697
J Biomol NMR. 2012 Mar;52(3):245-56
pubmed: 22318343
Biochemistry. 1993 May 4;32(17):4552-9
pubmed: 8387337
J Biol Chem. 1980 Jan 25;255(2):575-80
pubmed: 6243281
Biochem J. 1959 Mar;71(3):570-2
pubmed: 13638266
J Magn Reson. 2007 Jul;187(1):163-9
pubmed: 17468025
Protein Sci. 2005 Mar;14(3):799-811
pubmed: 15689516
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18945-50
pubmed: 17146057
Biochemistry. 1995 Aug 8;34(31):9991-9
pubmed: 7632698
Nat Struct Biol. 1996 Apr;3(4):340-5
pubmed: 8599760
ACS Omega. 2018 Jun 18;3(6):6465-6475
pubmed: 31458826
Biochemistry. 2013 Dec 3;52(48):8687-95
pubmed: 24180741
Science. 1988 Jul 1;241(4861):67-70
pubmed: 2838904