Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms.
Calreticulin
/ genetics
Hematopoietic Stem Cells
/ drug effects
Humans
Immunologic Factors
/ pharmacology
Interferon-alpha
/ pharmacology
Janus Kinase 2
/ genetics
Longitudinal Studies
Mutation
/ drug effects
Myeloproliferative Disorders
/ drug therapy
Prospective Studies
Receptors, Thrombopoietin
/ genetics
Tumor Cells, Cultured
Journal
Blood
ISSN: 1528-0020
Titre abrégé: Blood
Pays: United States
ID NLM: 7603509
Informations de publication
Date de publication:
02 12 2021
02 12 2021
Historique:
received:
25
01
2021
accepted:
15
07
2021
pubmed:
19
8
2021
medline:
4
1
2022
entrez:
18
8
2021
Statut:
ppublish
Résumé
Classical BCR-ABL-negative myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells (HSCs) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon α (IFNα) has demonstrated some efficacy in inducing molecular remission in MPNs. To determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in patients with MPN by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured the clonal architecture of early and late hematopoietic progenitors (84 845 measurements) and the global variant allele frequency in mature cells (409 measurements) several times per year. Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSCs. Our data support the hypothesis that IFNα targets JAK2V617F HSCs by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSCs and increases with high IFNα dose in heterozygous JAK2V617F HSCs. We also found that the molecular responses of CALRm HSCs to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and a high dose of IFNα correlates with worse outcomes. Our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dose.
Identifiants
pubmed: 34407546
pii: S0006-4971(21)01478-6
doi: 10.1182/blood.2021010986
pmc: PMC8641097
doi:
Substances chimiques
Calreticulin
0
Immunologic Factors
0
Interferon-alpha
0
Receptors, Thrombopoietin
0
MPL protein, human
143641-95-6
JAK2 protein, human
EC 2.7.10.2
Janus Kinase 2
EC 2.7.10.2
Types de publication
Journal Article
Observational Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2231-2243Subventions
Organisme : NCI NIH HHS
ID : U54 CA217376
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021 by The American Society of Hematology.
Références
PLoS Med. 2006 Jul;3(7):e270
pubmed: 16834459
Leukemia. 2020 Apr;34(4):1075-1089
pubmed: 31732720
Blood. 2007 Nov 15;110(10):3735-43
pubmed: 17709604
Cancer Med. 2020 Mar;9(6):2039-2051
pubmed: 31991066
Blood. 2021 Jan 21;137(3):387-391
pubmed: 32814349
Blood. 2015 Dec 10;126(24):2585-91
pubmed: 26486786
N Engl J Med. 2014 Jul 10;371(2):188-9
pubmed: 25006741
Nature. 2015 Apr 23;520(7548):549-52
pubmed: 25707806
Leukemia. 2019 Apr;33(4):995-1010
pubmed: 30470838
Nature. 2019 Jul;571(7765):355-360
pubmed: 31270458
Blood. 2013 Aug 8;122(6):893-901
pubmed: 23782935
Blood. 2013 May 2;121(18):3692-702
pubmed: 23487027
Nature. 2005 Apr 28;434(7037):1144-8
pubmed: 15793561
Exp Hematol Oncol. 2017 Nov 9;6:30
pubmed: 29152412
Nature. 2009 Apr 16;458(7240):904-8
pubmed: 19212321
J Exp Med. 2014 Feb 10;211(2):245-62
pubmed: 24493802
Nature. 2005 Jun 30;435(7046):1267-70
pubmed: 15988530
Cancer. 2017 Jul 15;123(14):2680-2687
pubmed: 28518222
Leukemia. 2020 Apr;34(4):1210-1212
pubmed: 31728058
Blood. 2019 Oct 31;134(18):1498-1509
pubmed: 31515250
Lancet. 1988 Aug 13;2(8607):403
pubmed: 2899816
Blood. 2008 Oct 15;112(8):3065-72
pubmed: 18650451
Mol Cell. 2020 Feb 20;77(4):748-760.e9
pubmed: 31785928
N Engl J Med. 2013 Dec 19;369(25):2391-2405
pubmed: 24325359
Blood. 2016 May 19;127(20):2391-405
pubmed: 27069254
Blood. 2013 Aug 22;122(8):1464-77
pubmed: 23863895
Lancet Haematol. 2021 Mar;8(3):e175-e184
pubmed: 33476571
Blood. 2017 Feb 9;129(6):667-679
pubmed: 28028029
Exp Hematol. 2015 Oct;43(10):912-918.e2
pubmed: 26072330
Leuk Res. 2013 Sep;37(9):1041-5
pubmed: 23827351
Oncogene. 2020 Jul;39(31):5323-5337
pubmed: 32572159
Blood. 2021 Apr 22;137(16):2139-2151
pubmed: 33667305
Lancet Haematol. 2020 Mar;7(3):e196-e208
pubmed: 32014125
Haematologica. 2018 Mar;103(3):438-446
pubmed: 29217781
J Exp Med. 2021 Feb 1;218(2):
pubmed: 33075130
Nat Commun. 2020 Sep 28;11(1):4886
pubmed: 32985500
N Engl J Med. 2013 Dec 19;369(25):2379-90
pubmed: 24325356
PLoS One. 2016 Oct 20;11(10):e0165336
pubmed: 27764253
Leukemia. 2014 Feb;28(2):460-3
pubmed: 24150219
Cell Stem Cell. 2021 Mar 4;28(3):502-513.e6
pubmed: 33621485
Blood. 2008 Aug 1;112(3):542-50
pubmed: 18523149