Advanced applications of chemo-responsive dyes based odor imaging technology for fast sensing food quality and safety: A review.

VOCs chemo-responsive dyes detection food quality and safety odor imaging technology sensing

Journal

Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205

Informations de publication

Date de publication:
09 2021
Historique:
revised: 24 06 2021
received: 07 04 2021
accepted: 06 07 2021
pubmed: 20 8 2021
medline: 26 10 2021
entrez: 19 8 2021
Statut: ppublish

Résumé

Public attention to foodquality and safety has been increased significantly. Therefore, appropriate analytical tools are needed to analyze and sense the food quality and safety. Volatile organic compounds (VOCs) are important indicators for the quality and safety of food products. Odor imaging technology based on chemo-responsive dyes is one of the most promising methods for analysis of food products. This article reviews the sensing and imaging fundamentals of odor imaging technology based on chemo-responsive dyes. The aim is to give detailed outlines about the theory and principles of using odor imaging technology for VOCs detection, and to focus primarily on its applications in the field of quality and safety evaluation of food products, as well as its future applicability in modern food industries and research. The literatures presented in this review clearly demonstrated that imaging technology based on chemo-responsive dyes has the exciting effect to inspect such as quality assessment of cereal , wine and vinegar flavored foods , poultry meat, aquatic products, fruits and vegetables, and tea. It has the potential for the rapid, reliable, and inline assessment of food safety and quality by providing odor-image-basedmonitoring tool. Practical Application: The literatures presented in this review clearly demonstrated that imaging technology based on chemo-responsive dyes has the exciting effect to inspect such as quality assessment of cereal , wine and vinegar flavored foods, poultry meat, aquatic products, fruits and vegetables, and tea.

Identifiants

pubmed: 34409725
doi: 10.1111/1541-4337.12823
doi:

Substances chimiques

Coloring Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

5145-5172

Subventions

Organisme : National Natural Science Foundation of China
ID : 31972154
Organisme : Jiangsu Agricultural independent innovation fund
ID : SCX203321
Organisme : Project of Faculty of Agricultural Equipment of Jiangsu University
ID : NZXB20200214
Organisme : Key R&D Program of Jiangsu Province
ID : BE2020379

Informations de copyright

© 2021 Institute of Food Technologists®.

Références

Akman, F., Issaoui, N., & Kazachenko, A. S. (2020). Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses. Journal of Molecular Modeling, 26, 161.
Alimelli, A., Pennazza, G., Santonico, M., Paolesse, R., Filippini, D., D'Amico, A., Lundstrom, I., & Di Natale, C. (2007). Fish freshness detection by a computer screen photoassisted based gas sensor array. Analytica Chimica Acta, 582, 320-328.
Askim, J. R., & Suslick, K. S. (2015). Hand-held reader for colorimetric sensor arrays. Analytical Chemistry, 87, 7810-7816.
Askim, J. R., Mahmoudi, M., & Suslick, K. S. (2013). Optical sensor arrays for chemical sensing: The optoelectronic nose. Chemical Society Reviews, 42, 8649-8682.
Baeckmann, V. C., Guillet, N. R., Renfer, D., Kahig, H., & Kleite, F. (2018). A toolbox for the synthesis of multifunctionalized mesoporous silica nanoparticles for biomedical applications. ACS Omega, 3, 17496-17510.
Beer, P. D., Cormode, D. P., & Davis, J. J. (2004). Zinc metalloporphyrin-functionalised nanoparticle anion sensors. Chemical Communications, 14, 414-415.
Bordbar, M. M., Tashkhourian, J., & Hemmateenejad, B. (2018). Qualitative and quantitative analysis of toxic materials in adulterated fruit pickle samples by a colorimetric sensor array. Sensors and Actuators B: Chemical, 257, 783-791.
Brandenburg, J. G., & Grimme, S. (2014). Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction. Topics in Current Chemistry, 345, 1-23.
Brunink, J. A. J., Di Natale, C., Bungaro, F., Davide, F. A. M., D'Amico, A., Paolesse, R., Boschi, T., Faccio, M., & Feerri, G. (1996). The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors. Analytica Chimica Acta, 325, 53-64.
Charoensuk, J., Thonglao, J., Wichaiyo, B., Mukdasai, K., Santaladchaiyakit, Y., Srijaranai, S., & Mukdasai, S. (2021). A simple and sensitive colorimetric sensor for cadmium (II) detection based on self-assembled trimethyl tetradecyl ammonium bromide and murexide on colloidal silica. Microchemical Journal, 160, 105666.
Chen, Q., Hui, Z., Zhao, J., & Ouyang, Q. (2014). Evaluation of chicken freshness using a low-cost colorimetric sensor array with AdaBoost-OLDA classification algorithm. LWT - Food Science and Technology, 57, 502-507.
Chen, Q., Li, H., Ouyang, Q., & Zhao, J. (2014). Identification of spoilage bacteria using a simple colorimetric sensor array. Sensors and Actuators B: Chemical, 205, 1-8.
Chen, Q., Liu, A., Zhao, J., Ouyang, Q., Sun, Z., & Huang, L. (2013). Monitoring vinegar acetic fermentation using a colorimetric sensor array. Sensors and Actuators B: Chemical, 183, 608-616.
Chen, Q., Liu, A., & Zhao, J. (2013). Classification of tea category using a portable electronic nose based on an odor imaging sensor array. Journal of Pharmaceutical and Biomedical Analysis, 84, 77-83.
Colombo, V., Montoro, C., Maspero, A., Palmisano, G., Masciocchi, N., Galli, S., Barea, E., & Navarro, J. A. (2012). Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification. Journal of the American Chemical Society, 134, 12830-12843.
de la Roza-Delgado, B., Soldado, A., de Faria Oliveira, A. F. G., Martínez-Fernández, A., & Argamentería, A. (2013). Assessing the value of a portable near infrared spectroscopy sensor for predicting pork meat quality traits of “asturcelta autochthonous swine breed”. Food Analytical Methods, 7(1), 151-156.
Deshmukh, S., Bandyopadhyay, R., Bhattacharyya, N., Pandey, R.A., & Jana, A. (2015). Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring-An overview. Talanta, 144, 329-340.
Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., Goletti, C., & D'Amico, A. (1998). Characterization and design of porphyrins-based broad selectivity chemical sensors for electronic nose applications. Sensors and Actuators B: Chemical, 52, 162-168.
Domínguez-Aragón, A., Olmedo-Martínez, J. A., & Zaragoza-Contreras, E. A. (2018) Colorimetric sensor based on a poly(ortho-phenylenediamine-co-aniline) copolymer for the monitoring of tilapia (Orechromis niloticus) freshness. Sensors and Actuators B: Chemical, 259, 170-176.
Dowlati, M., de la Guardia, M., Dowlati, M., & Mohtasebi, S. S. (2012). Application of machine-vision techniques to fish-quality assessment. TrAC Trends in Analytical Chemistry, 40, 168-179.
Duan, Y., Lin, H., He, P., & Chen, Q. (2021). Detection of volatile marker in the wheat infected with Aspergillus flavus by porous silica nanospheres doped Bodipy dyes. Sensors and Actuators B: Chemical, 330, 129407.
Dumanoğulları, F. M., Tutel, Y., Küçüköz, B., Sevinç, G., Karatay, A., Yılmaz, H., Hayvali, M., & Elmali, A. (2019). Investigation of ultrafast energy transfer mechanism in BODIPY-Porphyrin dyad system. Journal of Photochemistry and Photobiology A: Chemistry, 373, 116-121.
Ezhilan, M., Nesakumar, N., Babu, K.J. Srinandan, C. S., & Rayappan, J. B. B. (2018). An electronic nose for royal delicious apple quality assessment-A tri-layer approach. Food Research International, 109, 44-51.
Feng, T., Zhuang, H., Ye, R., Jin, Z., Xu, X., & Xie, Z. (2011). Analysis of volatile compounds of Mesona Blumes gum/rice extrudates via GC-MS and electronic nose. Sensors and Actuators B: Chemical, 160, 964-973.
Ferroudj, N., Talbot, D., Michel, A., Davidson, A., & Abramson, S. (2017). Increasing the efficiency of magnetic heterogeneous Fenton catalysts with a simple halogen visible lamp. Journal of Photochemistry and Photobiology A: Chemistry, 338, 85-95.
Gabor, G., Chadha, S., & Walt, D. R. (1995). Sensitivity enhancement of fluorescent pH indicators using pH-dependent energy transfer. Analytica Chimica Acta, 313, 131-137.
Gu, H., Huang, X., Chen, Q., Sun, Y., Tan, C., Zhao, J., & Lv, R. (2019). Prediction of the property of colorimetric sensor array based on density functional theory. Sensors and Materials, 31, 3067-3073.
Gu, H., Huang, X., Yao, L., Teye, E., & Wen, Y. (2014). Study on the binding ability of cobalt-porphyrin with small volatile organic compounds based on density functional theory. Analytical Methods, 6, 3360.
Guan, B., Xue, Z., Chen, Q., Lin, H., & Zhao, J. (2020). Preparation of zinc porphyrin nanoparticles and application in monitoring the ethanol content during the solid-state fermentation of Zhenjiang Aromatic vinegar. Microchemical Journal, 153, 104353.
Guan, B., Zhao, J., Jin, H., & Lin, H. (2016). Determination of rice storage time with colorimetric sensor array. Food Analytical Methods, 10, 1064-1062.
Guan, B., Zhao, J., Cai, M., Lin, H., Yao, L., & Sun, L. (2014). Analysis of volatile organic compounds from Chinese vinegar substrate during solid-state fermentation using a colorimetric sensor array. Analytical Methods, 6, 9383-9391.
Guan, B., Zhao, J., Lin, H., & Zou, X. (2013). Characterization of volatile organic compounds of vinegars with novel electronic nose system combined with multivariate analysis. Food Analytical Methods, 7, 1073-1082.
Haddi, Z., El Barbri, N., Tahri, K., Bougrini, M., El Bari, N., Llobet, E., & Bouchikhi, B. (2015). Instrumental assessment of red meat origins and their storage time using electronic sensing systems. Analytical Methods, 7(12), 5193-5203.
Hao, Y., Chen, W., Wang, L., Zhou, B., Zang, Q., Chen, S., & Liu, Y. N. (2014). A naphthalimide-based azo colorimetric and ratiometric probe: Synthesis and its application in rapid detection of cyanide anions. Analytical Methods, 6, 2478.
Hu, Y., Xue, Z., He, H., Ai, R., Liu, X., & Lu, X. (2013). Photoelectrochemical sensing for hydroquinone based on porphyrin-functionalized Au nanoparticles on graphene. Biosensors & Bioelectronics, 47, 45-49.
Huang, X., Xin, J., & Zhao, J. (2011). A novel technique for rapid evaluation of fish freshness using colorimetric sensor array. Journal of Food Engineering, 105, 632-637.
Huang, X., Zou, X., Shi, J., Guo, Y., Zhao, J., Zhang, J., & Lin, H. (2014). Determination of pork spoilage by colorimetric gas sensor array based on natural pigments. Food Chemistry, 145, 549-554.
Huang, X., Zou, X., Zhao, J., Shi, J., Li, Z., & Shen, T. (2015). Monitoring the biogenic amines in Chinese traditional salted pork in jelly (Yao-meat) by colorimetric sensor array based on nine natural pigments. International Journal of Food Science Technology, 50, 203-209.
Huang, X., Zou, X., Zhao, J., Shi, J., Li, Z., & Zhao, J. (2018). Colorimetric sensor arrays based on chemo-responsive dyes for food odor visualization. Trends in Food Science & Technology, 81, 90-107.
Huo, D., Wu, Y., Yang, M., Fa, H., Luo, X., & Hou, C. (2014). Discrimination of Chinese green tea according to varieties and grade levels using artificial nose and tongue based on colorimetric sensor arrays. Food Chemistry, 145, 639-645.
James, T., Schillaci, C., & Lipani, A. (2021). Convolutional neural networks for water segmentation using sentinel-2 red, green, blue (RGB) composites and derived spectral indices. International Journal of Remote Sensing, 42 (14), 5342-5369.
Jiang, H., Xu, W., & Chen, Q. (2019). Evaluating aroma quality of black tea by an olfactory visualization system: Selection of feature sensor using particle swarm optimization. Food Research International, 126, 108605.
Jo, B., & Jung, S. (2018). Quadrant-based minimum bounding rectangle-tree indexing method for similarity queries over big spatial data in HBase. Sensors, 18(9), 3032.
Khulal, U., Zhao, J., Hu, W., & Chen, Q. (2016). Comparison of different chemometric methods in quantifying total volatile basic-nitrogen (TVB-N) content in chicken meat using a fabricated colorimetric sensor array. RSC Advances, 6, 4663-4672.
Kuntz, I. D., Gasparro, F. P., Johnston, M. D., & Taylor, R. P. (1968). Molecular interactions and the Benesi-Hildebrand equation. Journal of the American Chemical Society, 90, 4778-4781.
Kutsanedzie, F. Y. H., Hao, L., Yan, S., Ouyang, Q., & Chen, Q. (2018). Near infrared chemo-responsive dye intermediaries spectra-based in-situ quantification of volatile organic compounds. Sensors and Actuators B: Chemical, 254, 597-602.
Leon, K., Mery, D., Pedreschi, F., & Leon, J. (2006). Color measurement in La*b* units from RGB digital images. Food Research International, 39, 1084-1091.
Li, R., Bu, T., Zhao, Y., Sun, X., Wang, Q., Tian, Y., Bai, F., & Wang, L. (2020). Polydopamine coated zirconium metal-organic frameworks-based immunochromatographic assay for highly sensitive detection of deoxynivalenol. Analytica Chimica Acta, 1131, 109-117.
Liao, S., Wu, S., & Chao, C. (2020) Preparation of black poly (methyl methacrylate-ethyleneglycol dimethacrylate) microspheres using metallic complex dyes. Materials Sciences and Applications, 11, 692-713.
Li, D., Huang, J., & Kaner, R. B. (2008). Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Accounts of Chemical Research, 42, 135-145.
Li, H., Chen, Q., Zhao, J., & Ouyang, Q. (2014). Non-destructive evaluation of pork freshness using a portable electronic nose (E-nose) based on a colorimetric sensor array. Analytical Methods, 6(16), 6271-6277.
Li, H., Kutsanedzie, F., Zhao, J., & Chen, Q. (2016). Quantifying total viable count in pork meat using combined hyperspectral imaging and artificial olfaction techniques. Food Analytical Methods, 9, 3015-3024.
Li, L., Xie, S., Ning, J., Chen, Q., & Zhang, Z. (2019). Evaluating green tea quality based on multisensor data fusion combining hyperspectral imaging and olfactory visualization systems. Journal of the Science of Food and Agriculture, 99(4), 1787-1794.
Li, R., Bu, T., Zhao, Y., Sun, X., Wang, Q., Tian, Y., Bai, F., & Wang, L. (2020). Polydopamine coated zirconium metal-organic frameworks-based immunochromatographic assay for highly sensitive detection of deoxynivalenol. Analytica Chimica Acta, 1131, 109-117.
Li, X., Xu, W., Wang, X., Jia, H., Zhao, B., Li, B., & Ozaki, Y. (2004). Ultraviolet-visible and surface-enhanced Raman scattering spectroscopy studies on self-assembled films of ruthenium phthalocyanine on organic monolayer-modified silver substrates. Thin Solid Films, 457, 372-380.
Lin, H., Duan, Y., Man, Z., Zareef, M., Wang, Z., & Chen, Q. (2021). Quantitation of volatile aldehydes using chemoselective response dyes combined with multivariable data analysis. Food Chemistry, 353, 129485.
Lin, H., Duan, Y., & Yan, S. (2019). Quantitative analysis of volatile organic compound using novel chemoselective response dye based on Vis-NIRS coupled Si-PLS. Microchemical Journal, 145, 1119-1128.
Lin, H., Jiang, H., He, P., Haruna, S. A., Chen, Q., Xue, Z., Chan, C., & Ali, S. (2021). Non-destructive detection of heavy metals in vegetable oil based on nano-chemoselective response dye combined with near-infrared spectroscopy. Sensors and Actuators B: Chemical, 335, 129716.
Lin, H., Kang, W., Jin, H., & Man, Z., & Chen, Q. (2020). Discrimination of Chinese Baijiu grades based on colorimetric sensor arrays. Food Science and Biotechnology, 39, 1039-1043.
Lin, H., Kang, W., Kutsanedzie, F. Y. H., & Chen, Q. (2019). A novel nanoscaled chemo dye-based sensor for the identification of volatile organic compounds during the mildewing process of stored wheat. Food Analytical Methods, 12, 2895-2907.
Lin, H., Man, Z., Guan, B., Chen, Q., Jin, H., & Xue, Z. (2017). In situ quantification of volatile ethanol in complex components based on colorimetric sensor array. Analytical Methods, 40, 5873-5879.
Lin, H., Man, Z. X., Kang, W. C., Guan, B. B., Chen, Q. S., & Xue, Z. L. (2018). A novel colorimetric sensor array based on boron-dipyrromethene dyes for monitoring the storage time of rice. Food Chemistry, 268, 300-306.
Lin, H., Wang, Z., Ahmad, W., Man, Z., & Duan, Y. (2020). Identification of rice storage time based on colorimetric sensor array combined hyperspectral imaging technology. Journal of Stored Products Research, 85, 101523.
Lin, H., Yan, S., Song, B., Wang, Z., & Sun, L. (2019). Discrimination of aged rice using colorimetric sensor array combined with volatile organic compounds. Journal of Food Process Engineering, 42, e13037.
Liu, Q., Zhao, N., Zhou, D., Sun, Y., Sun, K., Pan, L., & Tu, K. (2018). Discrimination and growth tracking of fungi contamination in peaches using electronic nose. Food Chemistry, 262, 226-234.
Liu, Y., Goebl, J., & Yin, Y. (2013). Templated synthesis of nanostructured materials. Chemical Society Reviews, 42, 2610-2653.
Liu, Z., Zhang, Y., Xie, Y., Sun, Y., Bi, K., Cui, Z., Zhao, L., & Fan, W. (2017). An aptamer-based colorimetric sensor for streptomycin and its application in food inspection. Chemical Research in Chinese Universities, 33, 714-720.
Long, J., Xu, J., Yang, Y., Wen, J., & Jia, C. (2011). A colorimetric array of metalloporphyrin derivatives for the detection of volatile organic compounds. Materials Science and Engineering B, 176, 1271-1276.
Lv, Y. Y., Wu, J., & Xu, Z.K. (2010). Colorimetric and fluorescent sensor constructing from the nanofibrous membrane of porphyrinated polyimide for the detection of hydrogen chloride gas. Sensors and Actuators B: Chemical, 148, 233-239.
Magnaghi, L. R., Alberti, G., Capone, F., Zanoni, C., Mannucci, B., Quadrelli, P., & Biesuz, R. (2020). Development of a dye-based device to assess the poultry meat spoilage. Part II: Array on act. Journal of Agricultural and Food Chemistry, 68(45), 12710-12718.
Majchrzak, T., Wojnowski, W., Dymerski, T., Gebicki, J., & Namiesnik, J. (2018). Electronic noses in classification and quality control of edible oils: A review. Food Chemistry, 246, 192-201.
Mamardashvili, G. M., Lazovskiy, D. A., Khodov, I. A, Efimov, A. E., & Mamardashvili, N. Z. (2021). New polyporphyrin arrays with controlled fluorescence obtained by diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu2+ Cation. Polymers, 13(5), 829.
Moreira, N., Lopes, P., Ferreira, H., Cabral, M., & Pinho, P.G.D. (2016). Influence of packaging and aging on the red wine volatile composition and sensory attributes. Food Packaging Shelf, 8, 14-23.
Motellier, S., & Toulhoat, P. (1993). Modified acid-base behaviour of resin-bound pH indicators. Analytica Chimica Acta, 271, 323-329.
Olafsdottir, G., Nesvadba, P., Di Natale, C., Careche, M., Oehlenschläger, J., Tryggvadóttir, S. a. V., Schubring, R., Kroeger, M., Heia, K., Esaiassen, M., Macagnano, A., & Jørgensen, B. M. (2004). Multisensor for fish quality determination. Trends in Food Science & Technology, 15(2), 86-93.
Ouyang, Q., Zhao, J., Chen, Q., & Lin, H. (2013). Classification of rice wine according to different marked ages using a novel artificial olfactory technique based on colorimetric sensor array. Food Chemistry, 138, 1320-1324.
Ouyang, Q., Zhao, J., & Chen, Q. (2013). Classification of rice wine according to different marked ages using a portable multi-electrode electronic tongue coupled with multivariate analysis. Food Research International, 51, 633-640.
Palmer, L. C., & Stupp, S. I. (2008). Molecular self-assembly into one-dimensional nanostructures. Accounts of Chemical Research, 41, 1674-1684.
Paolesse, R., Natale, C. D., Burgio, M., Martinelli, E., Mazzone, E., Palleschi, G., & D’ Amico, A. (2003). Porphyrin-based array of cross-selective electrodes for anhlysis of liquid samples. Sensors and Actuators B: Chemical, 95, 400-405.
Phelan, J. P. (2011). First moment. Mindfulness, 2, 68-70.
Pico, J., Bernal, J., & Gómez, M. (2015). Wheat bread aroma compounds in crumb and crust: A review. Food Research International, 75, 200-215.
Qian, S., & Lin, H. (2015). Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides. Analytical Chemistry, 87, 5395-5400.
Qin, H., Huo, D., Zhang, L., Yang, L., Zhang, S., Yang, M., Shen, C., & Hou, C. (2012). Colorimetric artificial nose for identification of Chinese liquor with different geographic origins. Food Research International, 45, 45-51.
Radi Ciptohadijoyo, S., Litananda, W. S., Rivai, M., & Purnomo, M. H. (2016). Electronic nose based on partition column integrated with gas sensor for fruit identification and classification. Computers and Electronics in Agriculture, 121, 429-435.
Rakow, N. A., Sen, A., Janzen, M. C., Ponder, J. B., & Suslick, K. S. (2005). Molecular recognition and discrimination of amines with a colorimetric array. Angewandte Chemie, 117, 4604-4608.
Rakow, N. A., & Suslick, K. S. (2000). A colorimetric sensor array for odour visualization. Nature, 406(6797), 710-713.
Ruenraroengsak, P., & Tetley, T. D. (2015). Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: Robust response of alveolar type 1 epithelial cells. Particle and Fibre Toxicology, 12, 19.
Salinas, Y., Ros-Lis, J. V., Vivancos, J.-L., Martínez-Máñez, R., Marcos, M. D., Aucejo, S., Herranz, N., Lorente, I., & Garcia, E. (2014). A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control, 35, 166-176.
Sanaeifar, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., & Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Measurement, 82, 105-114.
Scholl, J. A., Garcia-Etxarri, A., Koh, A. L., & Dionne, J. A. (2013). Observation of quantum tunneling between two plasmonic nanoparticles. Nano Letters, 13, 564-569.
Shimizu, T., Masuda, M., & Minamikawa, H. (2005). Supramolecular nanotube architectures based on amphiphilic molecules. Journal of Chemical Reviews, 105, 1401-1444.
Shi, Z., Han, X., Hu, W., Bai, H., Peng, B., Ji, L., Fan, Q., Li, L., & Huang, W. (2020). Bioapplications of small molecule Aza-BODIPY: From rational structural design to in vivo investigations. Chemical Society Reviews, 49, 7533-7567.
Skrbic, B., & Durisic-Mladenovic, N. (2007). Principal component analysis for soil contamination with organochlorine compounds. Chemosphere, 68, 2144-2152.
Song, G., Sun, R., Du, J., Chen, M., & Tian, Y. (2017). A highly selective, colorimetric, and environment-sensitive optical potassium ion sensor. Chemical Communications, 53(41), 5602-5605.
Sousa, A. A., Hassan, S. A., Knittel, L. L., Balbo, A., Aronova, M. A., Brown, P. H., Schuck, P., & Leapman, R. D. (2016). Biointeractions of ultrasmall glutathione-coated gold nanoparticles: Effect of small size variations. Nanoscale, 8, 6577-6588.
Stone, R. D., & Vaughn, J. L. (1986). The effect of pH indicators chlorphenol red and bromocresol purple on the in vitro production of lepidopteran nuclear polyhedrosis viruses. Journal of Invertebrate Pathology, 48, 381-383.
Su, Z., Shaw, W. L., Miao, Y.-R., You, S., Dlott, D. D., & Suslick, K. S. (2017). Shock wave chemistry in a metal-organic framework. Journal of the American Chemical Society, 139, 4619-4622.
Sung, J., Kim, B. K., Kim, B. S., & Kim, Y. (2014). Mass spectrometry-based electric nose system for assessing rice quality during storage at different temperatures. Journal of Stored Products Research, 59, 204-208.
Suslick, B. A., Feng, L., & Suslick, K. S. (2010). Discrimination of complex mixtures by a colorimetric sensor array: Coffee aromas. Analytical Chemistry, 82, 2067-2073.
Suslick, K. S., Neal, A., & Rakow, A. S. (2004). Colorimetric sensor arrays for molecular recognition. Tetrahedron, 60, 11133-11138.
Swamy, P. C. A., Mukherjee, S., & Thilagar, P. (2014). Multichannel-emissive V-shaped boryl-BODIPY dyads: Synthesis, structure, and remarkably diverse response toward fluoride. Inorganic Chemistry, 53, 4813-4823.
Valdez, M., Gupta, S. K., Lozano, K., & Mao, Y. (2019). ForceSpun polydiacetylene nanofibers as colorimetric sensor for food spoilage detection. Sensors and Actuators B: Chemical, 297, 126734.
Wang, R., Ruan, G., Sun, Y., Zhao, D., Yu, H., Zhang, C.-W., Li, L., & Liu, J. (2021). A full-wavelength coverage colorimetric sensor depending on polymer-carbon nanodots from blue to red for visual detection of nitrite via smartphone. Dyes and Pigments, 191, 109383.
Wang, Y., Yang, Q., Zhao, M. J., & Su, B. (2018). Silica-nanochannel-based interferometric sensor for selective detection of polar and aromatic volatile organic compounds. Analytical Chemistry, 90, 10780-10785.
Wong, C. P., & Horrocks, W. D. W. (1975). New metalloporphyrins. Thorium and yttrium complexes of tetraphenylporphin. Tetrahedron Letters, 16, 2637-2640.
Wu, L., Pu, H., & Sun, D. W. (2019). Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends in Food Science & Technology, 83, 259-273.
Xu, S., Hartvickson, S., & Zhao, J. X. (2011). Increasing surface area of silica nanoparticles with a rough surface. ACS Applied Materials & Interfaces, 3, 1865-1872.
Xu, Y., Kutsanedzie, F. Y. H., Sun, H., Wang, M., Chen, Q., Guo, Z., & Wu, J. (2018). Rapid pseudomonas species identification from chicken by integrating colorimetric sensors with near-infrared spectroscopy. Food Analytical Methods, 11(4), 1199-1208.
Ye, N. S. (2012). A minireview of analytical methods for the geographical origin analysis of teas (Camellia sinensis). Critical Reviews in Food Science and Nutrition, 52, 775-780.
Yu, D. G., An, J. H., Bae, J. Y., Ahn, S. D., Kang, S. Y., & Suh, K. S. (2005). Negatively charged uitrafine black particles of P (MMA-co-EGDMA) by dispersion polymerization for electrophoretic displays. Macromolecules, 38, 7485-7491.
Zaragoza, P., Fuentes, A., Ruiz-Rico, M., Vivancos, J. L., Fernandez-Segovia, I., Ros-Lis, J. V., Barat, J. M., & Martinez-Manez, R. (2015). Development of a colorimetric sensor array for squid spoilage assessment. Food Chemistry, 175, 315-321.
Zaragoza, P., Fuentes, A., Fernandez-Segovia, I., Vivancos, J. L., Rizo, A., Ros-Lis, J. V., Barat, J. M., & Martinez-Manez, R. (2013). Evaluation of sea bream (Sparus aurata) shelf life using an optoelectronic nose. Food Chemistry, 138(2-3), 1374-1380.
Zhu, J., Agyekum, A. A, Kutsanedzie, F. Y. H., Li, H., Chen, Q., Ouyang, Q., & Jiang, H. (2018). Qualitative and quantitative analysis of chlorpyrifos residues in tea by surface-enhanced Raman spectroscopy (SERS) combined with chemometric models. LWT - Food Science and Technology, 97, 760-769.
Zhang, X. B., Guo, C. C., Li, Z. Z., Shen, G. L., & Yu, R. Q. (2002). An optical fiber chemical sensor for mercury lons based on a porphyrin dimer. Analytical Chemistry, 74, 821-825.
Zhou, H., Baldini, L., Hong, J. Wilson, A. J., & Hamilton, A. D. (2006). Pattern recognition of proteins based on an array of functionalized porphyrins. Journal of the American Chemical Society, 128, 2421-2425.
Zhou, X., Yang, H., Wang, C., Mao, X., Wang, Y., Yang, Y., & Liu, G. (2010). Visible light induced photocatalytic degradation of rhodamine B on one-dimensional lron oxide particles. Journal of Physical Chemistry, 114, 17051-17061.
Zhang, C., Suslick, K. S. (2005). A colorimetric sensor array for organics in water. Journal of the American Chemical Society, 127, 11548-11549.
Zhang, K., Huang, S., Lu, H., Li, F., & Shao, L. (2020). Experimental study of the light source characteristics for the NH3 concentration detection. Optik, 209, 164608.

Auteurs

Wencui Kang (W)

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China.

Hao Lin (H)

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China.

Hao Jiang (H)

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China.

Selorm Yao-Say Solomon Adade (S)

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China.

Zhaoli Xue (Z)

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China.

Quansheng Chen (Q)

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China.

Articles similaires

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell

Perceptions of the neighbourhood food environment and food insecurity of families with children during the Covid-19 pandemic.

Irene Carolina Sousa Justiniano, Matheus Santos Cordeiro, Hillary Nascimento Coletro et al.
1.00
Humans COVID-19 Food Insecurity Cross-Sectional Studies Female
1.00
Animals Mice Odorants Neurons Olfactory Tubercle
Anthraquinones Kinetics Water Purification Adsorption Thermodynamics

Classifications MeSH