Kinetic and thermodynamic analysis of alizarin Red S biosorption by Alhagi maurorum: a sustainable approach for water treatment.
Alhagi maurorum
Alizarin Red S
Biosorption
Endothermic process
Free energy
Principal component analysis
Journal
BMC biotechnology
ISSN: 1472-6750
Titre abrégé: BMC Biotechnol
Pays: England
ID NLM: 101088663
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
23
06
2024
accepted:
21
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Synthetic dyes, such as Alizarin Red S, contribute significantly to environmental pollution. This study investigates the biosorption potential of Alhagi maurorum biosorbent for the removal of Alizarin Red S (ARS) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR) was used to analyze the biosorbent's adsorption sites. Various parameters were optimized to maximize dye adsorption. An optimal removal efficiency of 82.26% was attained by employing 0.9 g of biosorbent with a 25 ppm dye concentration at pH 6 and 60 °C over 30 min. The data were modeled using various isothermal and kinetic models to understand the adsorption behavior. Thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic. The pseudo-second-order kinetic model best described the data, indicating chemisorption as the rate-limiting step. The data matched best to the Langmuir model, indicating that the adsorption occurs as a monolayer on uniform surfaces with a finite number of binding sites. The model showed a strong correlation (R² = 0.991) and a maximum adsorption capacity (q
Identifiants
pubmed: 39478538
doi: 10.1186/s12896-024-00913-x
pii: 10.1186/s12896-024-00913-x
doi:
Substances chimiques
Anthraquinones
0
Water Pollutants, Chemical
0
Alizarin Red S
3F3AT0Q12H
Coloring Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
85Informations de copyright
© 2024. The Author(s).
Références
Ramavandi B, Najafpoor AA, Alidadi H, Bonyadi Z. Alizarin red-S removal from aqueous solutions using Saccharomyces cerevisiae: kinetic and equilibrium study. Desalin Water Treat. 2019;144:286–91.
doi: 10.5004/dwt.2019.23556
Mishra S, Chowdhary P, Bharagava RN. Conventional methods for the removal of industrial pollutants, their merits and demerits. Emerging and eco-friendly approaches for waste management 2019;1–31.
Ameri M, Khavari-Nejad R, Soltani N, Najafi F, Bagheri A. Application of immobilized microalgae for native wastewater treatment. Int J Algae. 2020;22(1):77–88.
doi: 10.1615/InterJAlgae.v22.i1.70
Bhatti HN, Mahmood Z, Kausar A, Yakout SM, Shair OH, Iqbal M. Biocomposites of polypyrrole, polyaniline and sodium alginate with cellulosic biomass: Adsorption-desorption, kinetics and thermodynamic studies for the removal of 2, 4-dichlorophenol. Int J Bio Macromol. 2020;153:146–57.
doi: 10.1016/j.ijbiomac.2020.02.306
Akram M, Salman M, Farooq U, Saleem U, Tahir S, Nazir H, Arsalan H. Phthalate-functionalized Sorghum bicolor L.; an effective biosorbent for the removal of alizarin red S and bromophenol blue dyes from simulated wastewater. Desalin Water Treat. 2020;190(3137870):383–92.
doi: 10.5004/dwt.2020.25724
Sadeghi A, Ehrampoush MH, Ghaneian MT, Najafpoor AA, Fallahzadeh H, Bonyadi Z. The effect of diazinon on the removal of carmoisine by Saccharomyces cerevisiae. Desalin Water Treat. 2019;137:273–8.
doi: 10.5004/dwt.2019.23189
Tang S, Xia D, Yao Y, Chen T, Sun J, Yin Y, Shen W, Peng Y. Dye adsorption by self-recoverable, adjustable amphiphilic graphene aerogel. J Colloi Interface Sci. 2019;554:682–91.
doi: 10.1016/j.jcis.2019.07.041
Tasrin S, Mohamed Madhar Fazil S, Senthilmurugan S, Selvaraju N. Facile preparation of nanocellulose embedded polypyrrole for dye removal: unary and binary process optimization and seed toxicity. Int J Environ Sci Technol. 2021;18:365–78.
doi: 10.1007/s13762-020-02814-w
Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng. 2018;6(4):4676–97.
doi: 10.1016/j.jece.2018.06.060
Obiora-Okafo IA, Onukwuli OD, Igwegbe CA, Onu CE, Omotioma M. Enhanced performance of natural polymer coagulants for dye removal from wastewater: coagulation kinetics, and mathematical modelling approach. Environ Proces. 2022;9(2):20.
doi: 10.1007/s40710-022-00561-3
Zhu G, Fang H, Xiao Y, Hursthouse AS. The application of fluorescence spectroscopy for the investigation of dye degradation by chemical oxidation. J Fluoresc. 2020;30(5):1271–9.
pubmed: 32767189
doi: 10.1007/s10895-020-02591-2
Onyechi C. Textile wastewater treatment using activated carbon from agro wastes. M. Eng. Thesis, Department of Chemical Engineering, Nnamdi Azikiwe University, Awka; 2014.
Ahmad MA, Eusoff MA, Oladoye PO, Adegoke KA, Bello OS. Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel. Chem Data Coll. 2020;28:100426.
da Silva Santos DH, Xiao Y, Chaukura N, Hill JM, Selvasembian R, Zanta CLS, Meili L. Regeneration of dye-saturated activated carbon through advanced oxidative processes: a review. Heliyon, 2022;8(8).
San Miguel G, Lambert S, Graham N. The regeneration of field-spent granular-activated carbons. Water Res. 2001;35(11):2740–8.
doi: 10.1016/S0043-1354(00)00549-2
Ali I. The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sep Purif Rev. 2010;39(3–4):95–171.
doi: 10.1080/15422119.2010.527802
Crini G, Lichtfouse E, Wilson LD, Morin-Crini N. Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett. 2019;17:195–213.
doi: 10.1007/s10311-018-0786-8
Enyoh EC, Ovuoraye P, Isiuku O, Igwegbe CA. Artificial neural network and response surface design for modeling the competitive biosorption of pentachlorophenol and 2, 4, 6-trichlorophenol to Canna indica L. in Aquaponia. Anal Method Environ Chem J. 2023;6(01):79–99.
doi: 10.24200/amecj.v6.i01.228
Kamran U, Bhatti HN, Iqbal M, Jamil S, Zahid M. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. J Mol Struct. 2019;1179:532–9.
doi: 10.1016/j.molstruc.2018.11.006
Madhogaria B, Banerjee S, Kundu A, Dhak P. Efficacy of new generation biosorbents for the sustainable treatment of antibiotic residues and antibiotic resistance genes from polluted waste effluent. Infect Med. 2024;3(1):100092.
Kumar A, Singh R, Upadhyay SK, Kumar S, Charaya M, Biosorption. The removal of toxic dyes from industrial effluent using phytobiomass-A review. Plant Arch. 2021;21:1320–5.
doi: 10.51470/PLANTARCHIVES.2021.v21.S1.207
Kazemi M, Bezdi KG. An investigation of the nutritional value of camelthorn (Alhagi maurorum) at three growth stages and its substitution with part of the forage in Afshari ewes’ diets. Anim Feed Sci Technol. 2021;271:114762.
doi: 10.1016/j.anifeedsci.2020.114762
Ebrahimi A, Ehteshami M, Dahrazma B. Isotherm and kinetic studies for the biosorption of cadmium from aqueous solution by Alhaji maurorum seed. Proc Safe Environ Prot. 2015;98:374–82.
doi: 10.1016/j.psep.2015.09.013
Kazemi M, Valizadeh R. Can Alhaji maurorum as a halophyte plant be ensiled with molasses and Saccharomyces cerevisiae well? AMB Exp. 2023;13(1):28.
doi: 10.1186/s13568-023-01529-8
Chinnathambi A, Alahmadi TA. Zinc nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract: Chemical characterization and cytotoxicity, antioxidant, and anti-osteosarcoma effects. Arab J Chem. 2021;14(4):103083.
doi: 10.1016/j.arabjc.2021.103083
Iqbal U, Ali A, Daad A, Aslam MU, Rehman FU, Farooq U, Gul MF. Unraveling the defensive strategies of camel thorn Alhagi maurorum medik. For thriving in arid and semi-arid environments. J Arid Environ. 2023;219:105076.
doi: 10.1016/j.jaridenv.2023.105076
Balasubramani K, Sivarajasekar N, Naushad M. Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: equilibrium and statistical modelling. J Mol Liq. 2020;301:112426.
doi: 10.1016/j.molliq.2019.112426
Gülen J, Gezerman AO. A novel biosorbent for remediation of colored waste water. Biomass Convers Biorefin. 2023;13(4):3227–35.
doi: 10.1007/s13399-021-01381-5
Gewers FL, Ferreira GR, Arruda HFD, Silva FN, Comin CH, Amancio DR, Costa LF. Principal component analysis: a natural approach to data exploration. ACM Comput Surv. 2021;54(4):1–34.
doi: 10.1145/3447755
Khalifa HA, Elattar AM, Eleiwa NZ. Possible analgesic, 1anti-inflammatory and anti-ulcerogenic effects of Alhagi maurorum methanolic extract in rats and mice. Slov Vet Res. 2018;55(Suppl 20):375–82.
Voudrias E, Fytianos K, Bozani E. Sorption–desorption isotherms of dyes from aqueous solutions and wastewaters with different sorbent materials. Global Nest Int J. 2002;4(1):75–83.
Muthukkumaran A, Aravamudan K. Combined homogeneous surface diffusion model – design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects. J Environ Manage. 2017;204:424–35.
pubmed: 28915477
doi: 10.1016/j.jenvman.2017.09.010
Igwegbe CA, Kozłowski M, Wasowicz J, Peczek E, Białowiec A. Nitrogen removal from landfill leachate using biochar derived from wheat straw. Materials. 2024;17(4):928.
pubmed: 38399179
doi: 10.3390/ma17040928
Igwegbe CA, Onukwuli OD, Onyechi KK, Ahmadi S. Equilibrium and kinetics analysis on vat yellow 4 uptake from aqueous environment by modified rubber seed shells: nonlinear modelling. J Mater Environ Sci. 2020;11(9):1424–44.
Sharma V, Shahnaz T, Subbiah S, Narayanasamy S. New insights into the remediation of water pollutants using nanobentonite incorporated nanocellulose chitosan based aerogel. J Pol Environ. 2020;28:2008–19.
doi: 10.1007/s10924-020-01740-9
Al-Najar JA. Removal of dyes from synthetic wastewater by agricultural waste. Iraqi J Chem Pet Eng. 2017;18(3):31–48.
doi: 10.31699/IJCPE.2017.3.3
Cramer J, Sager CP, Ernst B. Hydroxyl groups in synthetic and natural-product-derived therapeutics: a perspective on a common functional group. J Med Chem. 2019;62(20):8915–30.
pubmed: 31083946
doi: 10.1021/acs.jmedchem.9b00179
Igwegbe CA, Ighalo JO, Ghosh S, Ahmadi S, Ugonabo VI. Pistachio (Pistacia vera) waste as adsorbent for wastewater treatment: a review. Biomass Convers Biorefinery. 2023;13(10):8793–811.
doi: 10.1007/s13399-021-01739-9
Garaga MN, Nayeri M, Martinelli A. Effect of the alkyl chain length in 1-alkyl-3-methylimidazolium ionic liquids on inter-molecular interactions and rotational dynamics: a combined vibrational and NMR spectroscopic study. J Mol Liq. 2015;210:169–77.
doi: 10.1016/j.molliq.2015.06.055
Yin S, Wang C, Xu Q, Lei S, Wan L, Bai C. Studies of the effects of hydrogen bonding on monolayer structures of C18H37X (X = OH, SH) on HOPG. Chem Phy Lett. 2001;348(3–4):321–8.
doi: 10.1016/S0009-2614(01)01105-8
Al-Ahmed ZA. Surface methodology for optimized adsorption of hazardous organic pollutant from aqueous solutions via novel magnetic metal organic framework: kinetics, isotherm study, and DFT calculations. J Mol Liq. 2024;409:125507.
Ighalo JO, Igwegbe CA, Adeniyi AG. The utilization of rubber (Hevea brasiliensis) seed shells as adsorbent for water pollution remediation. In: Anastopoulos I, Lima E, Meili L, Giannakoudakis D, editors. Biomass-derived materials for environmental applications. Elsevier; 2022. p. 13–28.
Malbenia John M, Benettayeb A, Belkacem M, Ruvimbo Mitchel C, Hadj Brahim M, Benettayeb I, Haddou B, Al-Farraj S, Alkahtane AA, Ghosh S, et al. An overview on the key advantages and limitations of batch and dynamic modes of biosorption of metal ions. Chemosphere. 2024;357:142051.
pubmed: 38648988
doi: 10.1016/j.chemosphere.2024.142051
Orozco CI, Freire MS, Gómez-Díaz D, González-Álvarez J. Removal of copper from aqueous solutions by biosorption onto pine sawdust. Sust Chem Pharm. 2023;32:101016.
Aniagor CO, Hussein DM, Farag S, Hashem A. Application of novel organic acid-modified biosorbent in the sequestration of aqueous zinc ion. Sust Wat Res Manag. 2023;9(2):61.
Alotaibi AM, Alnawmasi JS, Alshammari NA, Abomuti MA, Elsayed NH, El-Desouky MG. Industrial dye absorption and elimination from aqueous solutions through bio-composite construction of an organic framework encased in food-grade algae and alginate: Adsorption isotherm, kinetics, thermodynamics, and optimization by Box–Behnken design. Int J Biol Macromol. 2024;274:133442.
Banerjee S, Chattopadhyaya M. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem. 2017;10:S1629–38.
doi: 10.1016/j.arabjc.2013.06.005
Kitemangu A, Vegi MR, Malima NM. Biosorption of Congo Red Dye from Aqueous Solution Using Adsorbent Prepared from Vangueria infausta Fruit Pericarp. Ads Sci. Tech. 2023; 2023:4319053.
Ukpong AA, Asuquo EO, Edekhe GI. The Adsorption Equilibrium and Kinetic studies for the removal of Crystal Violet Dye (Methyl Violet 6b) from aqueous solution using avocado pear seed activated Carbon. Int J Res Sci Innov. 2023;4(10):154–64.
Abuzerr S, Darwish M, Mahvi AH. Simultaneous removal of cationic methylene blue and anionic reactive red 198 dyes using magnetic activated carbon nanoparticles: equilibrium, and kinetics analysis. Wat Sci Tech. 2018;2017(2):534–45.
doi: 10.2166/wst.2018.145
Abewaa M, Mengistu A, Takele T, Fito J, Nkambule T. Adsorptive removal of malachite green dye from aqueous solution using Rumex abyssinicus derived activated carbon. Sci Rep. 2023;13(1):14701.
pubmed: 37679475
doi: 10.1038/s41598-023-41957-x
Sen N, Shefa NR, Reza K, Shawon SMAZ, Rahman MW. Adsorption of crystal violet dye from synthetic wastewater by ball-milled royal palm leaf sheath. Sci Rep. 2024;14(1):5349.
pubmed: 38438395
doi: 10.1038/s41598-024-52395-8
Sutherland C, Chittoo B, Laltoo V. Biosorption of methylene blue dye using banana floret: kinetic, equilibrium, thermodynamic and mass transfer studies. Desal Wat Treat. 2023;293:224–42.
doi: 10.5004/dwt.2023.29348
Soltani A, Faramarzi M, Mousavi Parsa SA. A review on adsorbent parameters for removal of dye products from industrial wastewater. Wat Qual Res J. 2021;56(4):181–93.
doi: 10.2166/wqrj.2021.023
Hambisa AA, Regasa MB, Ejigu HG, Senbeto CB. Adsorption studies of methyl orange dye removal from aqueous solution using Anchote peel-based agricultural waste adsorbent. App Wat Sci. 2023;13(1):24.
doi: 10.1007/s13201-022-01832-y
Shahnaz T, S MMF VCP, Narayanasamy S. Surface modification of nanocellulose using polypyrrole for the adsorptive removal of Congo red dye and chromium in binary mixture. Int J Biol Macromol. 2020;151:322–32.
pubmed: 32084468
doi: 10.1016/j.ijbiomac.2020.02.181
Arnata IW, Suprihatin S, Fahma F, Richana N, Sunarti T. Adsorption of anionic Congo red dye by using cellulose from sago frond. Poll Res. 2019;38(3):43–53.
Lombardo S, Thielemans W. Thermodynamics of adsorption on nanocellulose surfaces. Cellulose. 2019;26:249–79.
doi: 10.1007/s10570-018-02239-2
Shahnaz T, Bedadeep D, Narayanasamy S. Investigation of the adsorptive removal of methylene blue using modified nanocellulose. Int J Biol Macromol. 2022;200:162–71.
pubmed: 34979188
doi: 10.1016/j.ijbiomac.2021.12.081
Sawasdee S, Watcharabundit P. Adsorption behavior and mechanism of alizarin yellow and rhodamine B dyes on water hyacinth (Eichhornia crassipes) leaves. Sci Asia. 2022;48(6):804–12.
doi: 10.2306/scienceasia1513-1874.2022.121
Safa Y, Bhatti HN. Kinetic and thermodynamic modeling for the removal of Direct Red-31 and direct Orange-26 dyes from aqueous solutions by rice husk. Desalination. 2011;272(1–3):313–22.
doi: 10.1016/j.desal.2011.01.040
Sadaf S, Bhatti HN. Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk. J Taiwan Inst Chem Eng. 2014;45(2):541–53.
doi: 10.1016/j.jtice.2013.05.004
Al-Ghouti MA, Da’ana DA. Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater. 2020;393:122383.
pubmed: 32369889
doi: 10.1016/j.jhazmat.2020.122383
Saleh TA. Isotherm models of adsorption processes on adsorbents and nanoadsorbents. In: Saleh TA, editor Interface Science Technology. Volume 34. Elsevier; 2022. p. 99–126.
Okpara OG, Ogbeide OM, Ike OC, Menechukwu KC, Ejike EC. Optimum isotherm by linear and nonlinear regression methods for lead (II) ions adsorption from aqueous solutions using synthesized coconut shell–activated carbon (SCSAC). Toxin Rev. 2021;40(4):901–14.
doi: 10.1080/15569543.2020.1802596
Shahnaz T, Vishnu Priyan V, Jayakumar A, Narayanasamy S. Magnetic nanocellulose from Cyperus rotundas grass in the absorptive removal of rare earth element cerium (III): toxicity studies and interpretation. Chemosphere. 2022;287:131912.
pubmed: 34507146
doi: 10.1016/j.chemosphere.2021.131912
Igwegbe CA, Ighalo JO, Onyechi KK, Onukwuli OD. Adsorption of Congo Red and malachite green using H 3 PO 4 and NaCl-modified activated carbon from rubber (Hevea brasiliensis) seed shells. Sustain Water Resour Manag. 2021;7:1–16.
doi: 10.1007/s40899-021-00544-6
Húmpola P, Odetti HS, Fertitta AE, Vicente JL. Thermodynamic analysis of adsorption models of phenol in liquid phase on different activated carbons. J Chil Chem Soc. 2013;58(1):1541–4.
doi: 10.4067/S0717-97072013000100009
Asgher M, Bhatti HN. Mechanistic and kinetic evaluation of biosorption of reactive azo dyes by free, immobilized and chemically treated Citrus sinensis waste biomass. Ecol Eng. 2010;36(12):1660–5.
doi: 10.1016/j.ecoleng.2010.07.003
Ogunlusi GO, Amos OD, Olatunji OF, Adenuga AA. Equilibrium, kinetic, and thermodynamic studies of the adsorption of anionic and cationic dyes from aqueous solution using agricultural waste biochar. J Iran Chem Soc. 2023;20(4):817–30.
doi: 10.1007/s13738-022-02721-6
Ikram K, Jamila N, Salman M, Shehrbano M, Siddique A. Use of Polyalthia longifolia based alumina composites for the removal of reactive dyes from aqueous medium. Desalin Water Treat. 2020;185(3137870):364–74.
doi: 10.5004/dwt.2020.25441
Gul A, Muhammad S, Nawaz S, Munir S, Rehman KU, Ahmad S, Humphrey OS. Ficus religiosa bark an efficient adsorbent for alizarin Red S dye: equilibrium and kinetic analysis. J Iran Chem Soc. 2022;19:1737–1746.
Deniz F, Saygideger SD. Equilibrium, kinetic and thermodynamic studies of Acid Orange 52 dye biosorption by Paulownia tomentosa Steud. Leaf powder as a low-cost natural biosorbent. Bioresour Technol. 2010;101(14):5137–43.
pubmed: 20194017
doi: 10.1016/j.biortech.2010.02.004
Nandiyanto ABD, Girsang GCS, Rizkia RS. Isotherm adsorption characteristics of 63-um calcium carbonate particles prepared from eggshells waste. J Eng Sci Technol Rev. 2022;17(5):3203–10.
Gouamid M, Ouahrani M, Bensaci M. Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using date palm leaves. Energy Procedia. 2013;36:898–907.
doi: 10.1016/j.egypro.2013.07.103
Orugba HO, Osagie C, Ukpenusiowho D, Igwegbe CA, Odigie GO. In-situ and ex-situ synthesized activated carbons derived from Raphia hookeri Kernels for Ibuprofen adsorption in wastewater. Desalin Water Treat. 2024;100534.
Ibrahim HS, Ammar NS, Soylak M, Ibrahim M. Removal of cd (II) and pb (II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochim Acta Mol Biomol Spectrosc. 2012;96:413–20.
doi: 10.1016/j.saa.2012.05.039
Guerrero-Coronilla I, Morales-Barrera L, Cristiani-Urbina E. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves. J Environ. 2015;152:99–108.
Gautam RK, Mudhoo A, Chattopadhyaya MC. Kinetic, equilibrium, thermodynamic studies and spectroscopic analysis of alizarin Red S removal by mustard husk. J Environ Chem Eng. 2013;1(4):1283–91.
doi: 10.1016/j.jece.2013.09.021
Shalaby AA, Mohamed AA. Determination of acid dissociation constants of alizarin Red S, Methyl Orange, Bromothymol Blue and Bromophenol Blue using a digital camera. RSC adv. 2020;10(19):11311–6.
pubmed: 35495332
doi: 10.1039/C9RA10568A
Bellaj M, Yazid H, Aziz K, Regti A, Haddad ME, Achaby ME, Abourriche A, Gebrati L, Kurniawan TA, Aziz F. Eco-friendly synthesis of clay-chitosan composite for efficient removal of alizarin red S dye from wastewater: a comprehensive experimental and theoretical investigation. Environ Res. 2024;247:118352.
pubmed: 38309561
doi: 10.1016/j.envres.2024.118352
Rabiee F, Sarkhosh M, Azizi S, Jahantigh A, Hashemi SY, Baziar M, Gholami M, Azari A. The superior decomposition of 2, 4-Dinitrophenol under ultrasound-assisted Fe
doi: 10.1080/03067319.2022.2034798
Steiner T. The hydrogen bond in the solid state. Angew Chem Int Ed. 2002;41(1):48–76.
doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
Zhang L, Zhang S, Xu S, Ren X, Zhang Y, Cao F, Sun Q, Wennersten R, Yang L. The Effect of Nitrogen-and oxygen-containing functional groups on C2H6/SO2/NO adsorption: a density functional theory study. Energies. 2023;16(22):7537.
doi: 10.3390/en16227537
Xu B, Zhai Y, Zhu Y, Peng C, Wang T, Zhang C, Li C, Zeng G. The adsorption mechanisms of ClO 4 – onto highly graphited and hydrophobic porous carbonaceous materials from biomass. RSC Adv. 2016;6(96):93975–84.
doi: 10.1039/C6RA13341J
Hernández Velázquez J, Barroso-Flores J, Gama Goicochea A. Ab initio modeling of friction reducing agents shows quantum mechanical interactions can have macroscopic manifestation. J Phys Chem A. 2016;120(46):9244–8.
pubmed: 27800689
doi: 10.1021/acs.jpca.6b07890