Metabolome and transcriptome profiling of Theobroma cacao provides insights into the molecular basis of pod color variation.
Anthocyanins
Flavonoid biosynthesis
Flavonols
Pod color
Theobroma cacao
Journal
Journal of plant research
ISSN: 1618-0860
Titre abrégé: J Plant Res
Pays: Japan
ID NLM: 9887853
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
received:
02
11
2020
accepted:
11
08
2021
pubmed:
23
8
2021
medline:
16
10
2021
entrez:
22
8
2021
Statut:
ppublish
Résumé
The Theobroma cacao presents a wide diversity in pod color among different cultivars. Although flavonoid biosynthesis has been studied in many plants, molecular mechanisms governing the diversity of coloration in cacao pods are largely unknown. The flavonoid metabolite profiles and flavonoid biosynthetic gene expression in the pod exocarps of light green pod 'TAS 410' (GW), green pod 'TAS 166' (GF), and mauve pod 'TAS 168' (PF) were determined. Changes in flavonoid metabolites, particularly the anthocyanins (cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, and cyanidin O-syringic acid) were significantly up-accumulated in the mauve phenotype (PF) compared to the light green or green phenotypes, endowing the pod color change from light green or green to mauve. Consistently, the PF phenotype showed different expression patterns of flavonoid biosynthetic structural genes in comparison with GW/GF phenotypes. The expression level of LAR and ANR in GW/GF was significantly higher than PF, while the expression level of UFGT in GW/GF was lower than PF. These genes likely generated more anthocyanins in the exocarps samples of PF than that of GW/GF. Simultaneously, colorless flavan-3-ols (catechin, epicatechin and proanthocyanidin) content in the exocarp samples of PF was lower than GW/GF. Additionally, MYB (gene18079) and bHLH (gene5045 and gene21575) may participate in the regulation of the pod color. This study sheds light on the molecular basis of cacao pod color variation, which will contribute to breeding cacao varieties with enhanced flavonoid profiles for nutritional applications.
Identifiants
pubmed: 34420146
doi: 10.1007/s10265-021-01338-9
pii: 10.1007/s10265-021-01338-9
doi:
Substances chimiques
Anthocyanins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1323-1334Subventions
Organisme : National Natural Science Foundation of China
ID : 31670684
Organisme : Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences
ID : 1630142019003
Informations de copyright
© 2021. The Botanical Society of Japan.
Références
Abeynayake SW, Panter S, Chapman R, Webster T, Rochfort S, Mouradov A, Spangenberg G (2012) Biosynthesis of proanthocyanidins in white clover flowers: cross talk within the flavonoid pathway. Plant Physiol 158:666–678. https://doi.org/10.1104/pp.111.189258
doi: 10.1104/pp.111.189258
pubmed: 22167119
pmcid: 22167119
Abrahams S, Lee E, Walker AR, Tanner GJ, Ashton AR (2003) The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J 35:624–636
pubmed: 12940955
doi: 10.1046/j.1365-313X.2003.01834.x
pmcid: 12940955
Aharoni A, Vos CHRD, Wein M, Sun Z, O’Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332
pubmed: 11722774
doi: 10.1046/j.1365-313X.2001.01154.x
pmcid: 11722774
Albert NW, Davies KM, Lewis DH, Zhang H, Schwinn KE (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980
pubmed: 24642943
pmcid: 4001404
doi: 10.1105/tpc.113.122069
Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102
pubmed: 18280199
doi: 10.1016/j.tplants.2007.11.012
pmcid: 18280199
Bartley B (2004) The genetic diversity of cacao and its utilization. CABI Publishing, Wallingford
Biehl B, Ziegleder G (2003) Cocoa: chemistry of processing. In: Caballero B, Trugo L, Finglas PM (eds) Encyclopedia of food sciences and nutrition, 2nd edn. Elsevier, Amsterdam, pp 1436–1448
doi: 10.1016/B0-12-227055-X/00261-3
Campos-Vega R, Nieto-Figueroa KH, Oomah BD (2018) Cocoa (Theobroma cacao L.) pod husk: renewable source of bioactive compounds. Trends Food Sci Technol 81:172–184
doi: 10.1016/j.tifs.2018.09.022
Chen C (2015) Overview of plant pigments. Pigments in fruits and vegetables. Springer, New York
doi: 10.1007/978-1-4939-2356-4
Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J (2013) A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant 6:1769–1780. https://doi.org/10.1093/mp/sst080
doi: 10.1093/mp/sst080
pubmed: 23702596
pmcid: 23702596
Chiu LW, Li L (2012) Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta 236:1153–1164
pubmed: 22644767
doi: 10.1007/s00425-012-1665-3
pmcid: 22644767
Dasgupta K, Thilmony R, Stover E, Oliveira ML, Thomson J (2017) Novel R2R3-MYB transcription factors from Prunus americana regulate differential patterns of anthocyanin accumulation in tobacco and citrus. Gm Crops Food 8:85–105
pubmed: 28051907
pmcid: 5443614
doi: 10.1080/21645698.2016.1267897
Fang ZZ, Zhou DR, Ye XF, Jiang CC, Pan SL (2016) Identification of candidate anthocyanin-related genes by transcriptomic analysis of “Furongli” plum (Prunus salicina Lindl.) during fruit ripening using RNA-Seq. Front Plant Sci 7:1338
pubmed: 27630660
pmcid: 5005409
Feng S, Wang Y, Yang S, Chen XX (2010) Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 232:245–255
pubmed: 20422209
doi: 10.1007/s00425-010-1170-5
pmcid: 20422209
Figueira A (2005) Theobroma cacao (Cacao). Biotechnology of fruit and nut crops. CAB International Biosciences, Wallingford
Fraga CG, Clowers BH, Moore RJ, Zink EM (2010) Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography−mass spectrometry, XCMS, and chemometrics. Analytical Chem 82:4165–4173
doi: 10.1021/ac1003568
Gargouri M, Manigand C, Maug C, Granier T, D’Estaintot BL, Cala O, Pianet I, Bathany K, Chaudière J, Gallois B (2009) Structure and epimerase activity of anthocyanidin reductase from Vitis vinifera. Acta Crystallogr A 65:989–1000
Jaakola L, Määttä K, Pirttilä AM, Törrönen R, Kärenlampi S, Hohtola A (2002) Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol 130:729–739
pubmed: 166602
pmcid: 166602
doi: 10.1104/pp.006957
Jerkovic V, Brohan M, Monnart E, Nguyen F, Nizet S, Collin S (2010) Stilbenic profile of cocoa liquors from different origins determined by RP-HPLC-APCI(+)-MS/MS. Detection of a new resveratrol hexoside. J Agric Food Chem 58:7067–7074
pubmed: 20438125
doi: 10.1021/jf101114c
pmcid: 20438125
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317
doi: 10.1038/nmeth.3317
pubmed: 4655817
pmcid: 4655817
Koo Y, Poethig RS (2021) Expression pattern analysis of three R2R3-MYB transcription factors for the production of anthocyanin in different vegetative stages of Arabidopsis leaves. Appl Biol Chem 64:1–7
doi: 10.1186/s13765-020-00584-0
Lalitha S (2000) Primer premier 5. Biotech Software Internet Rep 1:270–272
doi: 10.1089/152791600459894
Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559
doi: 10.1186/1471-2105-9-559
Lepiniec LC, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430
pubmed: 16669768
doi: 10.1146/annurev.arplant.57.032905.105252
pmcid: 16669768
Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26:493–500
pubmed: 20022975
doi: 10.1093/bioinformatics/btp692
pmcid: 20022975
Li Y, Fang J, Qi X, Lin M, Zhong Y, Sun L, Cui W (2018) Combined analysis of the fruit metabolome and transcriptome reveals candidate genes involved in flavonoid biosynthesis in Actinidia arguta. Int J Mol Sci 19:1471
pmcid: 5983832
doi: 10.3390/ijms19051471
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656
doi: 10.1093/bioinformatics/btt656
pubmed: 24227677
pmcid: 24227677
Liu Y, Shi Z, Maximova S, Payne MJ, Guiltinan MJ (2013a) Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase. BMC Plant Biol 13:202
pubmed: 24308601
pmcid: 4233638
doi: 10.1186/1471-2229-13-202
Liu Y, Che F, Wang L, Meng R, Zhang X, Zhao Z (2013b) Fruit coloration and anthocyanin biosynthesis after bag removal in non-red and red apples (Malus × domestica Borkh.). Molecules 18:1549–1563
pubmed: 23353125
pmcid: 6269864
doi: 10.3390/molecules18021549
Liu Y (2010) Molecular analysis of genes involved in the synthesis of proanthocyanidins in Theobroma cacao. Dissertation, The Pennsylvania State University
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2
doi: 10.1006/meth.2001.1262
Lou Q, Liu Y, Qi Y, Jiao S, Tian F, Jiang L, Wang Y (2014) Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot 65:3157–3164. https://doi.org/10.1093/jxb/eru168
doi: 10.1093/jxb/eru168
pubmed: 24790110
pmcid: 4071837
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
pubmed: 4302049
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Morohashi K, Casas MI, Falcone Ferreyra ML, Mejia-Guerra MK, Pourcel L, Yilmaz A, Feller A, Carvalho B, Emiliani J, Rodriguez E (2012) A genome-wide regulatory framework identifies maize pericarp Color1 controlled genes. Plant Cell 24:2745–2764
pubmed: 22822204
pmcid: 3426112
doi: 10.1105/tpc.112.098004
Motamayor JC, Risterucci AM, Lopez PA, Ortiz CF, Moreno A, Lanaud C (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386
pubmed: 12399997
doi: 10.1038/sj.hdy.6800156
pmcid: 12399997
Motamayor JC, Lachenaud P, da Silva EMJW, Loor R, Kuhn DN, Brown JS, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE 3:e3311. https://doi.org/10.1371/journal.pone.0003311
doi: 10.1371/journal.pone.0003311
pubmed: 18827930
pmcid: 2551746
Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, Cornejo O, Findley SD, Zheng P, Utro F, Royaert S, Saski C, Jenkins J, Podicheti R, Zhao M, Scheffler BE, Stack JC, Feltus FA, Mustiga GM, Amores F, Phillips W, Marelli JP, May GD, Shapiro H, Ma J, Bustamante CD, Schnell RJ, Main D, Gilbert D, Parida L, Kuhn DN (2013) The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol 14:r53. https://doi.org/10.1186/gb-2013-14-6-r53
doi: 10.1186/gb-2013-14-6-r53
pubmed: 23731509
pmcid: 4053823
Mustiga GM, Gezan SA, Wilbert PM, Adriana AL, Allan MQ, Motamayor JC (2018) Phenotypic description of Theobroma cacao L. for yield and vigor traits from 34 hybrid families in Costa Rica based on the genetic basis of the parental population. Front Plant Sci 9:808
pubmed: 29971076
pmcid: 6018478
doi: 10.3389/fpls.2018.00808
Ortega N, Romero MP, Macià A, Reguant J, Anglès N, Morelló JR, Motilva MJ (2010) Comparative study of UPLC–MS/MS and HPLC–MS/MS to determine procyanidins and alkaloids in cocoa samples. J Food Composit Anal 23:298–305
doi: 10.1016/j.jfca.2009.10.005
Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145:601–615
pubmed: 17885080
pmcid: 2048810
doi: 10.1104/pp.107.107326
Patras MA, Milev BP, Vrancken G, Kuhnert N (2014) Identification of novel cocoa flavonoids from raw fermented cocoa beans by HPLC-MS~n. Food Res Int 63:353–359
doi: 10.1016/j.foodres.2014.05.031
Rai A, Saito K, Yamazaki M (2017) Integrated omics analysis of specialized metabolism in medicinal plants. Plant J 90:764–787
pubmed: 28109168
doi: 10.1111/tpj.13485
pmcid: 28109168
Ramsay NA, Glover BJ (2005) MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70
pubmed: 15708343
doi: 10.1016/j.tplants.2004.12.011
Rothenberg D, Yang H, Chen M, Zhang W, Zhang L (2019) Metabolome and transcriptome sequencing analysis reveals anthocyanin metabolism in pink flowers of anthocyanin-rich tea (Camellia sinensis). Molecules 24:E1064
pubmed: 30889908
doi: 10.3390/molecules24061064
pmcid: 30889908
Sánchez-Rabaneda F, Jáuregui O, Casals I, Andrés-Lacueva C, Izquierdo-Pulido M, Lamuela-Raventós RM (2003) Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J Mass Spectrometry 38:35–42
doi: 10.1002/jms.395
Schijlen EGWM, Vos CHRD, Tunen AJV, Bovy AG (2004) Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65:2631–2648
pubmed: 15464151
doi: 10.1016/j.phytochem.2004.07.028
pmcid: 15464151
Schwinn K (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851
pubmed: 16531495
pmcid: 1425845
doi: 10.1105/tpc.105.039255
Soubeyrand E, Basteau C, Hilbert G, Leeuwen CV, Delrot S, Gomes E (2014) Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon Berries Phytochem 103:38–49. https://doi.org/10.1016/j.phytochem.2014.03.024
doi: 10.1016/j.phytochem.2014.03.024
Stajich EJ (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618
pubmed: 12368254
pmcid: 187536
doi: 10.1101/gr.361602
Stark T, Lang R, Keller D, Hensel A, Hofmann T (2008) Absorption of N-phenylpropenoyl-L-amino acids in healthy humans by oral administration of cocoa (Theobroma cacao). Mol Nutr Food Res 52:1201–1214
pubmed: 18646003
doi: 10.1002/mnfr.200700447
pmcid: 18646003
Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci Technol 15:19–38
doi: 10.1016/j.tifs.2003.07.004
Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants: purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647–31656
pubmed: 12788945
doi: 10.1074/jbc.M302783200
pmcid: 12788945
Terrier N, Torregrosa L, Ageorges A, Vialet S, Verries C, Cheynier V, Romieu C (2009) Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol 149:1028–1041
pubmed: 19098092
pmcid: 2633825
doi: 10.1104/pp.108.131862
Tian J, Han ZY, Zhang J, Hu Y, Song T, Yao Y (2015) The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples. Sci Rep 5:12228
pubmed: 26192267
pmcid: 4507444
doi: 10.1038/srep12228
Tomás MJ (2016) Transcriptomic and metabolomic networks in the grape berry illustrate that it takes more than flavonoids to fight against ultraviolet radiation. Front Plant Sci 7:1337
Varet H, Brillet-Guéguen L, Coppée JY, Dillies MA (2016) SARTools: a DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS ONE 11:e0157022
pubmed: 27280887
pmcid: 4900645
doi: 10.1371/journal.pone.0157022
Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281–285
pubmed: 22872506
doi: 10.1007/s12064-012-0162-3
pmcid: 22872506
Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 Locus, Which Regulates Trichome Differentiation and Anthocyanin Biosynthesis in Arabidopsis, Encodes a WD40 Repeat Protein. Plant Cell 11:1337–1349
pubmed: 10402433
pmcid: 144274
doi: 10.1105/tpc.11.7.1337
Wang Z, Cui Y, Vainstein A, Chen S, Ma H (2017a) Regulation of Fig (Ficus carica L.) fruit color: metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Front Plant Sci 8:1990. https://doi.org/10.3389/fpls.2017.01990
doi: 10.3389/fpls.2017.01990
pubmed: 29209349
pmcid: 5701927
Wang Z, Hong D, Rui Z, Song L, Ma F, Xu L (2017b) Transcriptome analysis reveals candidate genes related to color fading of ‘Red Bartlett’ (Pyrus communis L.). Front Plant Sci 8:455
pubmed: 28408914
pmcid: 5374147
Wei H, Chen X, Zong X, Shu H, Gao D, Liu Q (2015) Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). PLoS ONE 10:e0121164
pubmed: 25799516
pmcid: 4370391
doi: 10.1371/journal.pone.0121164
Wen CH, Chu FH (2017) A R2R3-MYB gene LfMYB113 is responsible for autumn leaf coloration in formosan sweet gum (Liquidambar formosana Hance). Plant Cell Physiol 58:508–521
pubmed: 28115495
pmcid: 28115495
Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493
pubmed: 11402179
pmcid: 1540115
doi: 10.1104/pp.126.2.485
Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399
pubmed: 12532018
doi: 10.1126/science.1078540
pmcid: 12532018
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316-322. https://doi.org/10.1093/nar/gkr483
doi: 10.1093/nar/gkr483
pubmed: 21715386
pmcid: 3125809
Xu WJ, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci 20:176–185
pubmed: 25577424
doi: 10.1016/j.tplants.2014.12.001
pmcid: 25577424
Xu ZS, Feng K, Que F, Wang F, Xiong AS (2017) A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Sci Rep 7:45324
pubmed: 28345675
pmcid: 5366895
doi: 10.1038/srep45324
Yang J, Yu H, Liu BH et al (2013) DCGL v2.0: an R package for unveiling differential regulation from differential co-expression. PLoS ONE 8:e79729
pubmed: 24278165
pmcid: 3835854
doi: 10.1371/journal.pone.0079729
Yang T, Li K, Hao S, Zhang J, Song T, Tian J, Yao Y (2018) The use of RNA sequencing and correlation network analysis to study potential regulators of crabapple leaf color transformation. Plant Cell Physiol 59:1027–1042
pubmed: 29474693
doi: 10.1093/pcp/pcy044
pmcid: 29474693
Yuan H, Zeng X, Shi J, Xu Q, Wang Y (2018) Time-course comparative metabolite profiling under osmotic stress in tolerant and sensitive Tibetan Hulless Barley. BioMed Res Int 2018:9415409
pubmed: 30671479
pmcid: 6323448
Zhan JP, Thakare D, Ma C et al (2015) RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell 27:531
doi: 10.1105/tpc.114.135657
Zhang XD, Allan AC, Chen XQ, Fan L, Li KZ (2012) Coloration, anthocyanin profile and metal element content of Yunnan Red Pear (Pyrus pyrifolia). Hortic Sci 39:164–171
doi: 10.17221/265/2011-HORTSCI
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M (2016) iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 009:1667–1670
doi: 10.1016/j.molp.2016.09.014