ADAP-KDB: A Spectral Knowledgebase for Tracking and Prioritizing Unknown GC-MS Spectra in the NIH's Metabolomics Data Repository.


Journal

Analytical chemistry
ISSN: 1520-6882
Titre abrégé: Anal Chem
Pays: United States
ID NLM: 0370536

Informations de publication

Date de publication:
14 09 2021
Historique:
pubmed: 31 8 2021
medline: 18 9 2021
entrez: 30 8 2021
Statut: ppublish

Résumé

We report the development of a spectral knowledgebase named ADAP-KDB for tracking and prioritizing unknown gas chromatography-mass spectrometry (GC-MS) spectra in the NIH's Metabolomics Data Repository-a national and international repository for metabolomics data. ADAP-KDB consists of two parts. One part is a computational workflow that preprocesses raw mass spectrometry data and derives consensus mass spectra. The other part is a web portal for users to browse the consensus spectra and match query spectra against them. For each consensus spectrum, the Gini-Simpson diversity index and the

Identifiants

pubmed: 34455770
doi: 10.1021/acs.analchem.1c00355
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

12213-12220

Subventions

Organisme : NCI NIH HHS
ID : U01 CA235507
Pays : United States
Organisme : NIDDK NIH HHS
ID : U2C DK119886
Pays : United States

Auteurs

Aleksandr Smirnov (A)

University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.

Yunfei Liao (Y)

University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.

Eoin Fahy (E)

University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.

Shankar Subramaniam (S)

University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.

Xiuxia Du (X)

University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Cephalometry Humans Anatomic Landmarks Software Internet
Humans Algorithms Software Artificial Intelligence Computer Simulation

Classifications MeSH