All-flesh fruit in tomato is controlled by reduced expression dosage of AFF through a structural variant mutation in the promoter.
Solanum lycopersicum
cis-regulatory mutation
All-flesh fruit
dosage effect
locule gel
processing tomato
structural variant
Journal
Journal of experimental botany
ISSN: 1460-2431
Titre abrégé: J Exp Bot
Pays: England
ID NLM: 9882906
Informations de publication
Date de publication:
05 01 2022
05 01 2022
Historique:
received:
05
03
2021
accepted:
06
09
2021
pubmed:
8
9
2021
medline:
28
1
2022
entrez:
7
9
2021
Statut:
ppublish
Résumé
The formation of locule gel is an important process in tomato and is a typical characteristic of berry fruit. In this study, we examined a natural tomato mutant that produces all-flesh fruit (AFF) in which the locule tissue remains in a solid state during fruit development. We constructed different genetic populations to fine-map the causal gene for this trait and identified SlMBP3 as the locus conferring the locule gel formation, which we rename as AFF. We determined the causal mutation as a 416-bp deletion in the promoter region of AFF, which reduces its expression dosage. Generally, this sequence is highly conserved among Solanaceae, as well as within the tomato germplasm. Using BC6 near-isogenic lines, we determined that the reduced expression dosage of AFF did not affect the normal development of seeds, whilst producing unique, non-liquefied locule tissue that was distinct from that of normal tomatoes in terms of metabolic components. Combined analysis using mRNA-seq and metabolomics indicated the importance of AFF in locule tissue liquefaction. Our findings provide insights into fruit-type differentiation in Solanaceae crops and also present the basis for future applications of AFF in tomato breeding programs.
Identifiants
pubmed: 34490889
pii: 6365738
doi: 10.1093/jxb/erab401
pmc: PMC8730696
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
123-138Commentaires et corrections
Type : CommentIn
Informations de copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Références
J Biosci. 2014 Dec;39(5):917-29
pubmed: 25431420
Curr Opin Plant Biol. 2008 Feb;11(1):58-63
pubmed: 17997126
Plant Biotechnol J. 2020 Feb;18(2):354-363
pubmed: 31254436
J Exp Bot. 2015 Feb;66(4):1075-86
pubmed: 25573859
Plant Cell. 2009 Oct;21(10):3041-62
pubmed: 19880793
Plant Cell. 1992 Jun;4(6):667-679
pubmed: 12297658
Nat Biotechnol. 2016 Sep;34(9):950-2
pubmed: 27454737
Front Plant Sci. 2017 Aug 29;8:1440
pubmed: 28900431
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Plant Cell. 1995 Oct;7(10):1569-82
pubmed: 7580252
J Exp Bot. 2007;58(15-16):4131-46
pubmed: 18065765
Mol Plant. 2013 Nov;6(6):1769-80
pubmed: 23702596
Psychol Methods. 2012 Sep;17(3):399-417
pubmed: 22563845
Nat Commun. 2018 Jan 25;9(1):364
pubmed: 29371663
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Plant Physiol. 1998 Nov;118(3):783-92
pubmed: 9808722
PLoS One. 2014 Feb 26;9(2):e89871
pubmed: 24587088
Front Plant Sci. 2012 Aug 30;3:198
pubmed: 22969786
BMC Plant Biol. 2018 Dec 7;18(1):341
pubmed: 30526487
Plant Cell Rep. 2016 Jan;35(1):239-54
pubmed: 26563346
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13452-7
pubmed: 22847437
J Exp Bot. 2014 Jun;65(10):2731-46
pubmed: 24187421
Plant Cell. 2003 Nov;15(11):2603-11
pubmed: 14555696
Plant J. 2013 Apr;74(1):174-83
pubmed: 23289725
Plant Cell. 1993 Oct;5(10):1439-1451
pubmed: 12271039
Cell. 2018 Jan 11;172(1-2):249-261.e12
pubmed: 29328914
Cell. 2020 Jul 9;182(1):145-161.e23
pubmed: 32553272
Nat Genet. 2014 Mar;46(3):270-8
pubmed: 24441736
Plant Mol Biol. 2016 Jul;91(4-5):513-31
pubmed: 27125648
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W71-7
pubmed: 20457745
Nature. 2003 Jul 3;424(6944):85-8
pubmed: 12840762
Plant Cell. 2016 Oct;28(10):2478-2492
pubmed: 27624758
Bioinformatics. 2017 Aug 01;33(15):2397-2398
pubmed: 28379331
J Exp Bot. 2017 Oct 13;68(17):4869-4884
pubmed: 28992179
Cell. 2017 Oct 5;171(2):470-480.e8
pubmed: 28919077
Trends Plant Sci. 2019 Apr;24(4):352-365
pubmed: 30745056
Plant J. 2009 Dec;60(6):1081-95
pubmed: 19891701
Nucleic Acids Res. 2010 Sep;38(16):e164
pubmed: 20601685
Plant Cell. 2007 Nov;19(11):3516-29
pubmed: 17981996
Plant Physiol. 2005 Oct;139(2):750-69
pubmed: 16183847
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2655-62
pubmed: 23803858
Nat Biotechnol. 2015 Mar;33(3):290-5
pubmed: 25690850
Front Plant Sci. 2015 Apr 13;6:248
pubmed: 25918515
New Phytol. 2014 Feb;201(3):717-732
pubmed: 24164649
Plant J. 2012 Apr;70(2):243-55
pubmed: 22098335
J Exp Bot. 2010 Jun;61(6):1795-806
pubmed: 20335407
Trends Plant Sci. 2016 Jun;21(6):506-515
pubmed: 26876195
Plant Physiol. 2009 Mar;149(3):1505-28
pubmed: 19144766
Ann Bot. 2011 Jun;107(9):1427-31
pubmed: 21793247
Bioinformatics. 2011 Aug 1;27(15):2156-8
pubmed: 21653522
Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8
pubmed: 18039703
Plant Cell. 1995 Nov;7(11):1859-68
pubmed: 8535139
Plant Cell Physiol. 2006 Mar;47(3):426-31
pubmed: 16381658
Genome Biol. 2002 Oct 10;3(11):RESEARCH0059
pubmed: 12429058
Nat Plants. 2015 Dec 07;2:15188
pubmed: 27250746
Nucleic Acids Res. 2003 Jan 1;31(1):114-7
pubmed: 12519961
Plant Physiol. 1996 Jun;111(2):447-457
pubmed: 12226301
Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641
pubmed: 30976793
Nature. 2012 May 30;485(7400):635-41
pubmed: 22660326
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
Plant Physiol. 1999 Nov;121(3):857-69
pubmed: 10557234
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
J Exp Bot. 2019 Feb 5;70(3):909-924
pubmed: 30481310
Front Plant Sci. 2019 Feb 21;10:43
pubmed: 30846991
Biotechnol Adv. 2010 Jan-Feb;28(1):94-107
pubmed: 19850118
Nature. 2000 Apr 13;404(6779):766-70
pubmed: 10783890
Methods Mol Biol. 2011;696:291-303
pubmed: 21063955
Nucleic Acids Res. 2002 Jan 1;30(1):325-7
pubmed: 11752327
Plant Biotechnol J. 2015 Feb;13(2):259-68
pubmed: 25283700
Nat Genet. 2014 Nov;46(11):1220-6
pubmed: 25305757
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147