Genomic and evolutionary classification of lung cancer in never smokers.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
09 2021
Historique:
received: 25 11 2020
accepted: 15 07 2021
entrez: 8 9 2021
pubmed: 9 9 2021
medline: 15 10 2021
Statut: ppublish

Résumé

Lung cancer in never smokers (LCINS) is a common cause of cancer mortality but its genomic landscape is poorly characterized. Here high-coverage whole-genome sequencing of 232 LCINS showed 3 subtypes defined by copy number aberrations. The dominant subtype (piano), which is rare in lung cancer in smokers, features somatic UBA1 mutations, germline AR variants and stem cell-like properties, including low mutational burden, high intratumor heterogeneity, long telomeres, frequent KRAS mutations and slow growth, as suggested by the occurrence of cancer drivers' progenitor cells many years before tumor diagnosis. The other subtypes are characterized by specific amplifications and EGFR mutations (mezzo-forte) and whole-genome doubling (forte). No strong tobacco smoking signatures were detected, even in cases with exposure to secondhand tobacco smoke. Genes within the receptor tyrosine kinase-Ras pathway had distinct impacts on survival; five genomic alterations independently doubled mortality. These findings create avenues for personalized treatment in LCINS.

Identifiants

pubmed: 34493867
doi: 10.1038/s41588-021-00920-0
pii: 10.1038/s41588-021-00920-0
pmc: PMC8432745
mid: NIHMS1731380
doi:

Substances chimiques

AR protein, human 0
KRAS protein, human 0
Receptors, Androgen 0
UBA1 protein, human 0
EGFR protein, human EC 2.7.10.1
ErbB Receptors EC 2.7.10.1
Proto-Oncogene Proteins p21(ras) EC 3.6.5.2
Ubiquitin-Activating Enzymes EC 6.2.1.45

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1348-1359

Subventions

Organisme : NCI NIH HHS
ID : 75N91019D00024
Pays : United States
Organisme : Intramural NIH HHS
ID : Z01 ES050159
Pays : United States
Organisme : Wellcome Trust
ID : 203141/Z/16/Z
Pays : United Kingdom
Organisme : Intramural NIH HHS
ID : ZIA CP101231
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES032547
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA076292
Pays : United States
Organisme : Intramural NIH HHS
ID : Z99 CA999999
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA151645
Pays : United States
Organisme : NHLBI NIH HHS
ID : R35 HL150876
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Intramural NIH HHS
ID : ZIA ES103266
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA196530
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Références

The Cancer Atlas: Lung Cancer (American Cancer Society, 2021); https://canceratlas.cancer.org/the-burden/lung-cancer/
Cho, J. et al. Proportion and clinical features of never-smokers with non-small cell lung cancer. Chin. J. Cancer 36, 20 (2017).
pubmed: 28179026 pmcid: 5299770 doi: 10.1186/s40880-017-0187-6
Campbell, J. D. et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 48, 607–616 (2016).
pubmed: 27158780 pmcid: 4884143 doi: 10.1038/ng.3564
Collisson, E. A. et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).
doi: 10.1038/nature13385
Chen, J. et al. Genomic landscape of lung adenocarcinoma in East Asians. Nat. Genet. 52, 177–186 (2020).
pubmed: 32015526 doi: 10.1038/s41588-019-0569-6
Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).
pubmed: 22980976 pmcid: 3656590 doi: 10.1016/j.cell.2012.08.024
Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).
pubmed: 22980975 pmcid: 3557932 doi: 10.1016/j.cell.2012.08.029
Lee, J. J.-K. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857.e21 (2019).
pubmed: 31155235 doi: 10.1016/j.cell.2019.05.013
Shi, J. et al. Somatic genomics and clinical features of lung adenocarcinoma: a retrospective study. PLoS Med. 13, e1002162 (2016).
pubmed: 27923066 pmcid: 5140047 doi: 10.1371/journal.pmed.1002162
Wang, C. et al. Whole-genome sequencing reveals genomic signatures associated with the inflammatory microenvironments in Chinese NSCLC patients. Nat. Commun. 9, 2054 (2018).
pubmed: 29799009 pmcid: 5967326 doi: 10.1038/s41467-018-04492-2
Fernandez-Cuesta, L. et al. Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat. Commun. 5, 3518 (2014).
pubmed: 24670920 doi: 10.1038/ncomms4518
Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
doi: 10.1038/s41586-020-1969-6
Wu, K. et al. Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas. Nat. Commun. 6, 10131 (2015).
pubmed: 26647728 doi: 10.1038/ncomms10131
Carrot-Zhang, J. et al. Whole-genome characterization of lung adenocarcinomas lacking the RTK/RAS/RAF pathway. Cell Rep. 34, 108707 (2021).
pubmed: 33535033 pmcid: 8009291 doi: 10.1016/j.celrep.2021.108707
Landi, M. T. et al. Tracing lung cancer risk factors through mutational signatures in never smokers: the Sherlock-Lung study. Am. J. Epidemiol. 190, 962–976 (2021).
pubmed: 33712835 doi: 10.1093/aje/kwaa234
Skoulidis, F. et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 5, 860–877 (2015).
pubmed: 26069186 pmcid: 4527963 doi: 10.1158/2159-8290.CD-14-1236
Moll, U. M. & Petrenko, O. The MDM2-p53 interaction. Mol. Cancer Res. 1, 1001–1008 (2003).
pubmed: 14707283
Wala, J. A. et al. Selective and mechanistic sources of recurrent rearrangements across the cancer genome. Preprint at bioRxiv https://doi.org/10.1101/187609 (2017).
Reznik, E. et al. Mitochondrial DNA copy number variation across human cancers. eLife 5, e10769 (2016).
pubmed: 26901439 pmcid: 4775221 doi: 10.7554/eLife.10769
McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).
pubmed: 29107330 pmcid: 5720478 doi: 10.1016/j.cell.2017.10.001
Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).
pubmed: 29625053 pmcid: 6029450 doi: 10.1016/j.cell.2018.02.060
Moudry, P. et al. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage. Cell Cycle 11, 1573–1582 (2012).
pubmed: 22456334 doi: 10.4161/cc.19978
Martínez-Jiménez, F. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).
pubmed: 32778778 doi: 10.1038/s41568-020-0290-x
Huang, K.-L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370.e14 (2018).
pubmed: 29625052 pmcid: 5949147 doi: 10.1016/j.cell.2018.03.039
Staaf, J. et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 25, 1526–1533 (2019).
pubmed: 31570822 pmcid: 6859071 doi: 10.1038/s41591-019-0582-4
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018 pmcid: 7054213 doi: 10.1038/s41586-020-1943-3
Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019).
pubmed: 31470794 pmcid: 6717374 doi: 10.1186/s12864-019-6041-2
Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294.e20 (2019).
pubmed: 30849372 pmcid: 6424819 doi: 10.1016/j.cell.2019.02.012
Jager, M. et al. Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer. Genome Res. 29, 1067–1077 (2019).
pubmed: 31221724 pmcid: 6633256 doi: 10.1101/gr.246223.118
Singh, V. K., Rastogi, A., Hu, X., Wang, Y. & De, S. Mutational signature SBS8 predominantly arises due to late replication errors in cancer. Commun. Biol. 3, 421 (2020).
pubmed: 32747711 pmcid: 7400754 doi: 10.1038/s42003-020-01119-5
Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).
pubmed: 23852170 pmcid: 3789062 doi: 10.1038/ng.2702
Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836.e16 (2019).
pubmed: 30982602 pmcid: 6506336 doi: 10.1016/j.cell.2019.03.001
Tokiwa, H. & Sera, N. Contribution of nitrated polycyclic aromatic hydrocarbons in diesel particles to human lung cancer induction. Polycycl. Aromat. Compd. 21, 231–245 (2000).
doi: 10.1080/10406630008028536
Saini, N. et al. Mutation signatures specific to DNA alkylating agents in yeast and cancers. Nucleic Acids Res. 48, 3692–3707 (2020).
pubmed: 32133535 pmcid: 7144945 doi: 10.1093/nar/gkaa150
Chan, K. et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat. Genet. 47, 1067–1072 (2015).
pubmed: 26258849 pmcid: 4594173 doi: 10.1038/ng.3378
Barthel, F. P. et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat. Genet. 49, 349–357 (2017).
pubmed: 28135248 pmcid: 5571729 doi: 10.1038/ng.3781
Feuerbach, L. et al. TelomereHunter—in silico estimation of telomere content and composition from cancer genomes. BMC Bioinformatics 20, 272 (2019).
pubmed: 31138115 pmcid: 6540518 doi: 10.1186/s12859-019-2851-0
Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017).
pubmed: 28288110 pmcid: 5833945 doi: 10.1038/nm.4292
Zhao, E. Y. et al. Homologous recombination deficiency and platinum-based therapy outcomes in advanced breast cancer. Clin. Cancer Res. 23, 7521–7530 (2017).
pubmed: 29246904 doi: 10.1158/1078-0432.CCR-17-1941
Letouzé, E. et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun. 8, 1315 (2017).
pubmed: 29101368 pmcid: 5670220 doi: 10.1038/s41467-017-01358-x
Shinde, J. et al. Palimpsest: an R package for studying mutational and structural variant signatures along clonal evolution in cancer. Bioinformatics 34, 3380–3381 (2018).
pubmed: 29771315
Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).
pubmed: 32025013 pmcid: 7054212 doi: 10.1038/s41586-019-1907-7
Halvorsen, A. R. et al. TP53 mutation spectrum in smokers and never smoking lung cancer patients. Front. Genet. 7, 85 (2016).
pubmed: 27242894 pmcid: 4863128 doi: 10.3389/fgene.2016.00085
Gu, J. et al. TP53 mutation is associated with a poor clinical outcome for non-small cell lung cancer: evidence from a meta-analysis. Mol. Clin. Oncol. 5, 705–713 (2016).
pubmed: 28101350 pmcid: 5228103 doi: 10.3892/mco.2016.1057
López, S. et al. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 52, 283–293 (2020).
pubmed: 32139907 pmcid: 7116784 doi: 10.1038/s41588-020-0584-7
Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50, 1189–1195 (2018).
pubmed: 30013179 pmcid: 6072608 doi: 10.1038/s41588-018-0165-1
Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).
pubmed: 28445112 doi: 10.1056/NEJMoa1616288
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer. A Review of Human Carcinogens: Personal Habits and Indoor Combustions (International Agency for Research on Cancer, 2012).
United States Public Health Service. Office of the Surgeon General. The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General (US Department of Health and Human Services, Public Health Service, Office of the Surgeon General, 2006).
Lopez-Bigas, N. & Gonzalez-Perez, A. Are carcinogens direct mutagens? Nat. Genet. 52, 1137–1138 (2020).
pubmed: 33128047 doi: 10.1038/s41588-020-00730-w
Cho, I. J. et al. Mechanisms, hallmarks, and implications of stem cell quiescence. Stem Cell Reports 12, 1190–1200 (2019).
pubmed: 31189093 pmcid: 6565921 doi: 10.1016/j.stemcr.2019.05.012
Fukada, S.-I., Ma, Y. & Uezumi, A. Adult stem cell and mesenchymal progenitor theories of aging. Front. Cell Dev. Biol. 2, 10 (2014).
pubmed: 25364718 pmcid: 4207038 doi: 10.3389/fcell.2014.00010
Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).
pubmed: 20110496 pmcid: 4105182 doi: 10.1126/science.1180794
Kim, C. F. B. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005).
pubmed: 15960971 doi: 10.1016/j.cell.2005.03.032
Van Meter, M. E. M. et al. K-Ras
pubmed: 17192389 pmcid: 1874575 doi: 10.1182/blood-2006-09-047530
Kubara, K. et al. Status of KRAS in iPSCs impacts upon self-renewal and differentiation propensity. Stem Cell Reports 11, 380–394 (2018).
pubmed: 29983389 pmcid: 6092694 doi: 10.1016/j.stemcr.2018.06.008
Bax, M. et al. The ubiquitin proteasome system is a key regulator of pluripotent stem cell survival and motor neuron differentiation. Cells 8, 581 (2019).
pmcid: 6627164 doi: 10.3390/cells8060581
Leon, T. Y. Y. et al. Transcriptional regulation of RET by Nkx2-1, Phox2b, Sox10, and Pax3. J. Pediatr. Surg. 44, 1904–1912 (2009).
pubmed: 19853745 doi: 10.1016/j.jpedsurg.2008.11.055
Grey, W. et al. Activation of the receptor tyrosine kinase, RET, improves long-term hematopoietic stem cell outgrowth and potency. Blood 136, 2535–2547 (2020).
pubmed: 32589703 doi: 10.1182/blood.2020006302 pmcid: 7714096
Fonseca-Pereira, D. et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 514, 98–101 (2014).
pubmed: 25079320 doi: 10.1038/nature13498
Zhao, B. et al. ARID1A promotes genomic stability through protecting telomere cohesion. Nat. Commun. 10, 4067 (2019).
pubmed: 31492885 pmcid: 6731242 doi: 10.1038/s41467-019-12037-4
Sun, X. et al. Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Cell Stem Cell 18, 456–466 (2016).
pubmed: 27044474 pmcid: 4826298 doi: 10.1016/j.stem.2016.03.001
van der Vaart, A. & van den Heuvel, S. Switching on regeneration. Stem Cell Investig. 3, 41 (2016).
pubmed: 27668248 pmcid: 5014847 doi: 10.21037/sci.2016.08.05
Wu, S., Zhang, R. & Bitler, B. G. Arid1a controls tissue regeneration. Stem Cell Investig. 3, 35 (2016).
pubmed: 27582418 pmcid: 4981703 doi: 10.21037/sci.2016.07.07
Nagl, N. G. Jr, Wang, X., Patsialou, A., Van Scoy, M. & Moran, E. Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J. 26, 752–763 (2007).
pubmed: 17255939 pmcid: 1794396 doi: 10.1038/sj.emboj.7601541
Chiba, S. Notch signaling in stem cell systems. Stem Cells 24, 2437–2447 (2006).
pubmed: 16888285 doi: 10.1634/stemcells.2005-0661
Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).
pubmed: 31996850 pmcid: 7021511 doi: 10.1038/s41586-020-1961-1
Maeda, Y., Davé, V. & Whitsett, J. A. Transcriptional control of lung morphogenesis. Physiol. Rev. 87, 219–244 (2007).
pubmed: 17237346 doi: 10.1152/physrev.00028.2006
Alanis, D. M., Chang, D. R., Akiyama, H., Krasnow, M. A. & Chen, J. Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nat. Commun. 5, 3923 (2014).
pubmed: 24879355 doi: 10.1038/ncomms4923
Singh, I. et al. Hmga2 is required for canonical WNT signaling during lung development. BMC Biol. 12, 21 (2014).
pubmed: 24661562 pmcid: 4064517 doi: 10.1186/1741-7007-12-21
Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).
pubmed: 32042191 pmcid: 7021003 doi: 10.1038/s41591-019-0750-6
Duffy, M. J. et al. p53 as a target for the treatment of cancer. Cancer Treat. Rev. 40, 1153–1160 (2014).
pubmed: 25455730 doi: 10.1016/j.ctrv.2014.10.004
Shaikh, M. F. et al. Emerging role of MDM2 as target for anti-cancer therapy: a review. Ann. Clin. Lab. Sci. 46, 627–634 (2016).
pubmed: 27993876
Chuang, J. C. et al. ERBB2-mutated metastatic non-small cell lung cancer: response and resistance to targeted therapies. J. Thorac. Oncol. 12, 833–842 (2017).
pubmed: 28167203 pmcid: 5402884 doi: 10.1016/j.jtho.2017.01.023
Harvey, R. D., Adams, V. R., Beardslee, T. & Medina, P. Afatinib for the treatment of EGFR mutation-positive NSCLC: a review of clinical findings. J. Oncol. Pharm. Pract. 26, 1461–1474 (2020).
pubmed: 32567494 pmcid: 7448811 doi: 10.1177/1078155220931926
Park, K. et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 17, 577–589 (2016).
pubmed: 27083334 doi: 10.1016/S1470-2045(16)30033-X
Shen, X. et al. A systematic analysis of the resistance and sensitivity of HER2
pubmed: 26391018 doi: 10.3109/10799893.2015.1049361
Miyazaki, M. et al. The p53 activator overcomes resistance to ALK inhibitors by regulating p53-target selectivity in ALK-driven neuroblastomas. Cell Death Discov. 4, 56 (2018).
pubmed: 29760954 pmcid: 5945735 doi: 10.1038/s41420-018-0059-0
Dey, P. et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature 542, 119–123 (2017).
pubmed: 28099419 pmcid: 5398413 doi: 10.1038/nature21052
Muller, F. L., Aquilanti, E. A. & DePinho, R. A. Collateral lethality: a new therapeutic strategy in oncology. Trends Cancer 1, 161–173 (2015).
pubmed: 26870836 pmcid: 4746004 doi: 10.1016/j.trecan.2015.10.002
Hsiehchen, D. et al. DNA repair gene mutations as predictors of immune checkpoint inhibitor response beyond tumor mutation burden. Cell Rep. Med. 1, 100034 (2020).
pubmed: 32676589 pmcid: 7365618 doi: 10.1016/j.xcrm.2020.100034
Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).
pubmed: 25765070 pmcid: 4993154 doi: 10.1126/science.aaa1348
Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).
pubmed: 29658845 pmcid: 7193684 doi: 10.1056/NEJMoa1801946
Ready, N. et al. First-line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J. Clin. Oncol. 37, 992–1000 (2019).
pubmed: 30785829 pmcid: 6494267 doi: 10.1200/JCO.18.01042
Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).
pubmed: 31666701 doi: 10.1038/s41586-019-1694-1
Yang, L. et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 5, 8 (2020).
pubmed: 32296030 pmcid: 7005297 doi: 10.1038/s41392-020-0110-5
Medema, J. P. & Vermeulen, L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474, 318–326 (2011).
pubmed: 21677748 doi: 10.1038/nature10212
Jørsboe, E., Hanghøj, K. & Albrechtsen, A. fastNGSadmix: admixture proportions and principal component analysis of a single NGS sample. Bioinformatics 33, 3148–3150 (2017).
pubmed: 28957500 doi: 10.1093/bioinformatics/btx474
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
pubmed: 23396013 pmcid: 3833702 doi: 10.1038/nbt.2514
Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).
pubmed: 30013048 doi: 10.1038/s41592-018-0051-x
Freed, D., Pan, R. & Aldana, R. TNscope: accurate detection of somatic mutations with haplotype-based variant candidate detection and machine learning filtering. Preprint at bioRxiv https://doi.org/10.1101/250647 (2018).
Zhu, B. et al. The genomic and epigenomic evolutionary history of papillary renal cell carcinomas. Nat. Commun. 11, 3096 (2020).
pubmed: 32555180 pmcid: 7303129 doi: 10.1038/s41467-020-16546-5
Karczewski, K. J. et al. The mutational constraints spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654 pmcid: 7334197 doi: 10.1038/s41586-020-2308-7
Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423–E2429 (2015).
pubmed: 25703262 pmcid: 7350419 doi: 10.1002/humu.22771
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
pubmed: 20601685 pmcid: 2938201 doi: 10.1093/nar/gkq603
Hasan, M. S., Wu, X., Watson, L. T. & Zhang, L. UPS-indel: a universal positioning system for indels. Sci. Rep. 7, 14106 (2017).
pubmed: 29074871 pmcid: 5658412 doi: 10.1038/s41598-017-14400-1
Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. 7, a026625 (2017).
pubmed: 28270531 pmcid: 5538405 doi: 10.1101/cshperspect.a026625
Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).
pubmed: 22608083 pmcid: 3428864 doi: 10.1016/j.cell.2012.04.023
Scott, A. D. et al. CharGer: clinical Characterization of Germline variants. Bioinformatics 35, 865–867 (2019).
pubmed: 30102335 doi: 10.1093/bioinformatics/bty649
Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).
pubmed: 26582918 doi: 10.1093/nar/gkv1222
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).
pubmed: 29056346 pmcid: 5720395 doi: 10.1016/j.cell.2017.09.042
Muiños, F., Martínez-Jiménez, F., Pich, O., Gonzalez-Perez, A. & Lopez-Bigas, N. In silico saturation mutagenesis of cancer genes. Nature 596, 428–432 (2021).
pubmed: 34321661 doi: 10.1038/s41586-021-03771-1
Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).
pubmed: 21527027 pmcid: 3218867 doi: 10.1186/gb-2011-12-4-r41
Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4, 175–185 (2014).
pubmed: 24436049 pmcid: 4293454 doi: 10.1158/2159-8290.CD-13-0285
Yang, L. et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153, 919–929 (2013).
pubmed: 23663786 pmcid: 3704973 doi: 10.1016/j.cell.2013.04.010
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).
pubmed: 32025012 pmcid: 7025897 doi: 10.1038/s41586-019-1913-9
Ding, Z. et al. Estimating telomere length from whole genome sequence data. Nucleic Acids Res. 42, e75 (2014).
pubmed: 24609383 pmcid: 4027178 doi: 10.1093/nar/gku181
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592 pmcid: 3776390 doi: 10.1038/nature12477
Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).
pubmed: 26372948 pmcid: 4747795 doi: 10.1038/nbt.3344
Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat. Commun. 5, 2997 (2014).
pubmed: 24429703 doi: 10.1038/ncomms3997
Luce, R. D. Individual Choice Behavior: a Theoretical Analysis (Wiley, 1959).
Plackett, R. L. The analysis of permutations. Appl. Stat. 24, 193 (1975).
doi: 10.2307/2346567

Auteurs

Tongwu Zhang (T)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Philippe Joubert (P)

Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada.

Naser Ansari-Pour (N)

Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Wei Zhao (W)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Phuc H Hoang (PH)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Rachel Lokanga (R)

Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

Aaron L Moye (AL)

Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA.

Jennifer Rosenbaum (J)

Westat, Rockville, MD, USA.

Abel Gonzalez-Perez (A)

Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain.

Francisco Martínez-Jiménez (F)

Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain.

Andrea Castro (A)

Department of Medicine, Division of Medical Genetics, University of California San Diego, San Diego, CA, USA.

Lucia Anna Muscarella (LA)

Laboratory of Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.

Paul Hofman (P)

Laboratory of Clinical and Experimental Pathology, University Hospital Federation OncoAge, Nice Hospital, University Côte d'Azur, Nice, France.

Dario Consonni (D)

Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

Angela C Pesatori (AC)

Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.

Michael Kebede (M)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Mengying Li (M)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Bonnie E Gould Rothberg (BE)

Smilow Cancer Hospital, Yale-New Haven Health, New Haven, CT, USA.
Yale Comprehensive Cancer Center, New Haven, CT, USA.

Iliana Peneva (I)

Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK.

Matthew B Schabath (MB)

Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

Maria Luana Poeta (ML)

Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.

Manuela Costantini (M)

Department of Urology, Istituto di Ricovero e Cura a Carattere Scientifico Regina Elena National Cancer Institute, Rome, Italy.

Daniela Hirsch (D)

Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

Kerstin Heselmeyer-Haddad (K)

Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

Amy Hutchinson (A)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Mary Olanich (M)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Scott M Lawrence (SM)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Petra Lenz (P)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Maire Duggan (M)

Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

Praphulla M S Bhawsar (PMS)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Jian Sang (J)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Jung Kim (J)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Laura Mendoza (L)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Natalie Saini (N)

Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA.

Leszek J Klimczak (LJ)

Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle, NC, USA.

S M Ashiqul Islam (SMA)

Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA.

Burcak Otlu (B)

Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA.

Azhar Khandekar (A)

Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA.

Nathan Cole (N)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Douglas R Stewart (DR)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Jiyeon Choi (J)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Kevin M Brown (KM)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Neil E Caporaso (NE)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Samuel H Wilson (SH)

Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA.

Yves Pommier (Y)

Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

Qing Lan (Q)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Nathaniel Rothman (N)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Jonas S Almeida (JS)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Hannah Carter (H)

Department of Medicine, Division of Medical Genetics, University of California San Diego, San Diego, CA, USA.

Thomas Ried (T)

Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

Carla F Kim (CF)

Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA.
Department of Genetics, Harvard Medical School, Boston, MA, USA.

Nuria Lopez-Bigas (N)

Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain.
Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.

Montserrat Garcia-Closas (M)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Jianxin Shi (J)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Yohan Bossé (Y)

Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada.
Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada.

Bin Zhu (B)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Dmitry A Gordenin (DA)

Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA.

Ludmil B Alexandrov (LB)

Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA.

Stephen J Chanock (SJ)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

David C Wedge (DC)

Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
Manchester Cancer Research Centre, The University of Manchester, Manchester, UK.

Maria Teresa Landi (MT)

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA. landim@mail.nih.gov.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH