Genomic and evolutionary classification of lung cancer in never smokers.
Adult
Aged
Aged, 80 and over
DNA Copy Number Variations
/ genetics
ErbB Receptors
/ genetics
Female
Genome
/ genetics
Genome-Wide Association Study
Humans
Lung Neoplasms
/ genetics
Male
Middle Aged
Neoplastic Stem Cells
/ pathology
Non-Smokers
/ statistics & numerical data
Proto-Oncogene Proteins p21(ras)
/ genetics
Receptors, Androgen
/ genetics
Risk Factors
Smoking
/ genetics
Ubiquitin-Activating Enzymes
/ genetics
Whole Genome Sequencing
Young Adult
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
25
11
2020
accepted:
15
07
2021
entrez:
8
9
2021
pubmed:
9
9
2021
medline:
15
10
2021
Statut:
ppublish
Résumé
Lung cancer in never smokers (LCINS) is a common cause of cancer mortality but its genomic landscape is poorly characterized. Here high-coverage whole-genome sequencing of 232 LCINS showed 3 subtypes defined by copy number aberrations. The dominant subtype (piano), which is rare in lung cancer in smokers, features somatic UBA1 mutations, germline AR variants and stem cell-like properties, including low mutational burden, high intratumor heterogeneity, long telomeres, frequent KRAS mutations and slow growth, as suggested by the occurrence of cancer drivers' progenitor cells many years before tumor diagnosis. The other subtypes are characterized by specific amplifications and EGFR mutations (mezzo-forte) and whole-genome doubling (forte). No strong tobacco smoking signatures were detected, even in cases with exposure to secondhand tobacco smoke. Genes within the receptor tyrosine kinase-Ras pathway had distinct impacts on survival; five genomic alterations independently doubled mortality. These findings create avenues for personalized treatment in LCINS.
Identifiants
pubmed: 34493867
doi: 10.1038/s41588-021-00920-0
pii: 10.1038/s41588-021-00920-0
pmc: PMC8432745
mid: NIHMS1731380
doi:
Substances chimiques
AR protein, human
0
KRAS protein, human
0
Receptors, Androgen
0
UBA1 protein, human
0
EGFR protein, human
EC 2.7.10.1
ErbB Receptors
EC 2.7.10.1
Proto-Oncogene Proteins p21(ras)
EC 3.6.5.2
Ubiquitin-Activating Enzymes
EC 6.2.1.45
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1348-1359Subventions
Organisme : NCI NIH HHS
ID : 75N91019D00024
Pays : United States
Organisme : Intramural NIH HHS
ID : Z01 ES050159
Pays : United States
Organisme : Wellcome Trust
ID : 203141/Z/16/Z
Pays : United Kingdom
Organisme : Intramural NIH HHS
ID : ZIA CP101231
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES032547
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA076292
Pays : United States
Organisme : Intramural NIH HHS
ID : Z99 CA999999
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA151645
Pays : United States
Organisme : NHLBI NIH HHS
ID : R35 HL150876
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Intramural NIH HHS
ID : ZIA ES103266
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA196530
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.
Références
The Cancer Atlas: Lung Cancer (American Cancer Society, 2021); https://canceratlas.cancer.org/the-burden/lung-cancer/
Cho, J. et al. Proportion and clinical features of never-smokers with non-small cell lung cancer. Chin. J. Cancer 36, 20 (2017).
pubmed: 28179026
pmcid: 5299770
doi: 10.1186/s40880-017-0187-6
Campbell, J. D. et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 48, 607–616 (2016).
pubmed: 27158780
pmcid: 4884143
doi: 10.1038/ng.3564
Collisson, E. A. et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).
doi: 10.1038/nature13385
Chen, J. et al. Genomic landscape of lung adenocarcinoma in East Asians. Nat. Genet. 52, 177–186 (2020).
pubmed: 32015526
doi: 10.1038/s41588-019-0569-6
Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).
pubmed: 22980976
pmcid: 3656590
doi: 10.1016/j.cell.2012.08.024
Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).
pubmed: 22980975
pmcid: 3557932
doi: 10.1016/j.cell.2012.08.029
Lee, J. J.-K. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857.e21 (2019).
pubmed: 31155235
doi: 10.1016/j.cell.2019.05.013
Shi, J. et al. Somatic genomics and clinical features of lung adenocarcinoma: a retrospective study. PLoS Med. 13, e1002162 (2016).
pubmed: 27923066
pmcid: 5140047
doi: 10.1371/journal.pmed.1002162
Wang, C. et al. Whole-genome sequencing reveals genomic signatures associated with the inflammatory microenvironments in Chinese NSCLC patients. Nat. Commun. 9, 2054 (2018).
pubmed: 29799009
pmcid: 5967326
doi: 10.1038/s41467-018-04492-2
Fernandez-Cuesta, L. et al. Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat. Commun. 5, 3518 (2014).
pubmed: 24670920
doi: 10.1038/ncomms4518
Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
doi: 10.1038/s41586-020-1969-6
Wu, K. et al. Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas. Nat. Commun. 6, 10131 (2015).
pubmed: 26647728
doi: 10.1038/ncomms10131
Carrot-Zhang, J. et al. Whole-genome characterization of lung adenocarcinomas lacking the RTK/RAS/RAF pathway. Cell Rep. 34, 108707 (2021).
pubmed: 33535033
pmcid: 8009291
doi: 10.1016/j.celrep.2021.108707
Landi, M. T. et al. Tracing lung cancer risk factors through mutational signatures in never smokers: the Sherlock-Lung study. Am. J. Epidemiol. 190, 962–976 (2021).
pubmed: 33712835
doi: 10.1093/aje/kwaa234
Skoulidis, F. et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 5, 860–877 (2015).
pubmed: 26069186
pmcid: 4527963
doi: 10.1158/2159-8290.CD-14-1236
Moll, U. M. & Petrenko, O. The MDM2-p53 interaction. Mol. Cancer Res. 1, 1001–1008 (2003).
pubmed: 14707283
Wala, J. A. et al. Selective and mechanistic sources of recurrent rearrangements across the cancer genome. Preprint at bioRxiv https://doi.org/10.1101/187609 (2017).
Reznik, E. et al. Mitochondrial DNA copy number variation across human cancers. eLife 5, e10769 (2016).
pubmed: 26901439
pmcid: 4775221
doi: 10.7554/eLife.10769
McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).
pubmed: 29107330
pmcid: 5720478
doi: 10.1016/j.cell.2017.10.001
Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).
pubmed: 29625053
pmcid: 6029450
doi: 10.1016/j.cell.2018.02.060
Moudry, P. et al. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage. Cell Cycle 11, 1573–1582 (2012).
pubmed: 22456334
doi: 10.4161/cc.19978
Martínez-Jiménez, F. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).
pubmed: 32778778
doi: 10.1038/s41568-020-0290-x
Huang, K.-L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370.e14 (2018).
pubmed: 29625052
pmcid: 5949147
doi: 10.1016/j.cell.2018.03.039
Staaf, J. et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 25, 1526–1533 (2019).
pubmed: 31570822
pmcid: 6859071
doi: 10.1038/s41591-019-0582-4
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018
pmcid: 7054213
doi: 10.1038/s41586-020-1943-3
Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019).
pubmed: 31470794
pmcid: 6717374
doi: 10.1186/s12864-019-6041-2
Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294.e20 (2019).
pubmed: 30849372
pmcid: 6424819
doi: 10.1016/j.cell.2019.02.012
Jager, M. et al. Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer. Genome Res. 29, 1067–1077 (2019).
pubmed: 31221724
pmcid: 6633256
doi: 10.1101/gr.246223.118
Singh, V. K., Rastogi, A., Hu, X., Wang, Y. & De, S. Mutational signature SBS8 predominantly arises due to late replication errors in cancer. Commun. Biol. 3, 421 (2020).
pubmed: 32747711
pmcid: 7400754
doi: 10.1038/s42003-020-01119-5
Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).
pubmed: 23852170
pmcid: 3789062
doi: 10.1038/ng.2702
Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836.e16 (2019).
pubmed: 30982602
pmcid: 6506336
doi: 10.1016/j.cell.2019.03.001
Tokiwa, H. & Sera, N. Contribution of nitrated polycyclic aromatic hydrocarbons in diesel particles to human lung cancer induction. Polycycl. Aromat. Compd. 21, 231–245 (2000).
doi: 10.1080/10406630008028536
Saini, N. et al. Mutation signatures specific to DNA alkylating agents in yeast and cancers. Nucleic Acids Res. 48, 3692–3707 (2020).
pubmed: 32133535
pmcid: 7144945
doi: 10.1093/nar/gkaa150
Chan, K. et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat. Genet. 47, 1067–1072 (2015).
pubmed: 26258849
pmcid: 4594173
doi: 10.1038/ng.3378
Barthel, F. P. et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat. Genet. 49, 349–357 (2017).
pubmed: 28135248
pmcid: 5571729
doi: 10.1038/ng.3781
Feuerbach, L. et al. TelomereHunter—in silico estimation of telomere content and composition from cancer genomes. BMC Bioinformatics 20, 272 (2019).
pubmed: 31138115
pmcid: 6540518
doi: 10.1186/s12859-019-2851-0
Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017).
pubmed: 28288110
pmcid: 5833945
doi: 10.1038/nm.4292
Zhao, E. Y. et al. Homologous recombination deficiency and platinum-based therapy outcomes in advanced breast cancer. Clin. Cancer Res. 23, 7521–7530 (2017).
pubmed: 29246904
doi: 10.1158/1078-0432.CCR-17-1941
Letouzé, E. et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun. 8, 1315 (2017).
pubmed: 29101368
pmcid: 5670220
doi: 10.1038/s41467-017-01358-x
Shinde, J. et al. Palimpsest: an R package for studying mutational and structural variant signatures along clonal evolution in cancer. Bioinformatics 34, 3380–3381 (2018).
pubmed: 29771315
Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).
pubmed: 32025013
pmcid: 7054212
doi: 10.1038/s41586-019-1907-7
Halvorsen, A. R. et al. TP53 mutation spectrum in smokers and never smoking lung cancer patients. Front. Genet. 7, 85 (2016).
pubmed: 27242894
pmcid: 4863128
doi: 10.3389/fgene.2016.00085
Gu, J. et al. TP53 mutation is associated with a poor clinical outcome for non-small cell lung cancer: evidence from a meta-analysis. Mol. Clin. Oncol. 5, 705–713 (2016).
pubmed: 28101350
pmcid: 5228103
doi: 10.3892/mco.2016.1057
López, S. et al. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 52, 283–293 (2020).
pubmed: 32139907
pmcid: 7116784
doi: 10.1038/s41588-020-0584-7
Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50, 1189–1195 (2018).
pubmed: 30013179
pmcid: 6072608
doi: 10.1038/s41588-018-0165-1
Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).
pubmed: 28445112
doi: 10.1056/NEJMoa1616288
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer. A Review of Human Carcinogens: Personal Habits and Indoor Combustions (International Agency for Research on Cancer, 2012).
United States Public Health Service. Office of the Surgeon General. The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General (US Department of Health and Human Services, Public Health Service, Office of the Surgeon General, 2006).
Lopez-Bigas, N. & Gonzalez-Perez, A. Are carcinogens direct mutagens? Nat. Genet. 52, 1137–1138 (2020).
pubmed: 33128047
doi: 10.1038/s41588-020-00730-w
Cho, I. J. et al. Mechanisms, hallmarks, and implications of stem cell quiescence. Stem Cell Reports 12, 1190–1200 (2019).
pubmed: 31189093
pmcid: 6565921
doi: 10.1016/j.stemcr.2019.05.012
Fukada, S.-I., Ma, Y. & Uezumi, A. Adult stem cell and mesenchymal progenitor theories of aging. Front. Cell Dev. Biol. 2, 10 (2014).
pubmed: 25364718
pmcid: 4207038
doi: 10.3389/fcell.2014.00010
Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).
pubmed: 20110496
pmcid: 4105182
doi: 10.1126/science.1180794
Kim, C. F. B. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005).
pubmed: 15960971
doi: 10.1016/j.cell.2005.03.032
Van Meter, M. E. M. et al. K-Ras
pubmed: 17192389
pmcid: 1874575
doi: 10.1182/blood-2006-09-047530
Kubara, K. et al. Status of KRAS in iPSCs impacts upon self-renewal and differentiation propensity. Stem Cell Reports 11, 380–394 (2018).
pubmed: 29983389
pmcid: 6092694
doi: 10.1016/j.stemcr.2018.06.008
Bax, M. et al. The ubiquitin proteasome system is a key regulator of pluripotent stem cell survival and motor neuron differentiation. Cells 8, 581 (2019).
pmcid: 6627164
doi: 10.3390/cells8060581
Leon, T. Y. Y. et al. Transcriptional regulation of RET by Nkx2-1, Phox2b, Sox10, and Pax3. J. Pediatr. Surg. 44, 1904–1912 (2009).
pubmed: 19853745
doi: 10.1016/j.jpedsurg.2008.11.055
Grey, W. et al. Activation of the receptor tyrosine kinase, RET, improves long-term hematopoietic stem cell outgrowth and potency. Blood 136, 2535–2547 (2020).
pubmed: 32589703
doi: 10.1182/blood.2020006302
pmcid: 7714096
Fonseca-Pereira, D. et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 514, 98–101 (2014).
pubmed: 25079320
doi: 10.1038/nature13498
Zhao, B. et al. ARID1A promotes genomic stability through protecting telomere cohesion. Nat. Commun. 10, 4067 (2019).
pubmed: 31492885
pmcid: 6731242
doi: 10.1038/s41467-019-12037-4
Sun, X. et al. Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Cell Stem Cell 18, 456–466 (2016).
pubmed: 27044474
pmcid: 4826298
doi: 10.1016/j.stem.2016.03.001
van der Vaart, A. & van den Heuvel, S. Switching on regeneration. Stem Cell Investig. 3, 41 (2016).
pubmed: 27668248
pmcid: 5014847
doi: 10.21037/sci.2016.08.05
Wu, S., Zhang, R. & Bitler, B. G. Arid1a controls tissue regeneration. Stem Cell Investig. 3, 35 (2016).
pubmed: 27582418
pmcid: 4981703
doi: 10.21037/sci.2016.07.07
Nagl, N. G. Jr, Wang, X., Patsialou, A., Van Scoy, M. & Moran, E. Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J. 26, 752–763 (2007).
pubmed: 17255939
pmcid: 1794396
doi: 10.1038/sj.emboj.7601541
Chiba, S. Notch signaling in stem cell systems. Stem Cells 24, 2437–2447 (2006).
pubmed: 16888285
doi: 10.1634/stemcells.2005-0661
Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).
pubmed: 31996850
pmcid: 7021511
doi: 10.1038/s41586-020-1961-1
Maeda, Y., Davé, V. & Whitsett, J. A. Transcriptional control of lung morphogenesis. Physiol. Rev. 87, 219–244 (2007).
pubmed: 17237346
doi: 10.1152/physrev.00028.2006
Alanis, D. M., Chang, D. R., Akiyama, H., Krasnow, M. A. & Chen, J. Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nat. Commun. 5, 3923 (2014).
pubmed: 24879355
doi: 10.1038/ncomms4923
Singh, I. et al. Hmga2 is required for canonical WNT signaling during lung development. BMC Biol. 12, 21 (2014).
pubmed: 24661562
pmcid: 4064517
doi: 10.1186/1741-7007-12-21
Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).
pubmed: 32042191
pmcid: 7021003
doi: 10.1038/s41591-019-0750-6
Duffy, M. J. et al. p53 as a target for the treatment of cancer. Cancer Treat. Rev. 40, 1153–1160 (2014).
pubmed: 25455730
doi: 10.1016/j.ctrv.2014.10.004
Shaikh, M. F. et al. Emerging role of MDM2 as target for anti-cancer therapy: a review. Ann. Clin. Lab. Sci. 46, 627–634 (2016).
pubmed: 27993876
Chuang, J. C. et al. ERBB2-mutated metastatic non-small cell lung cancer: response and resistance to targeted therapies. J. Thorac. Oncol. 12, 833–842 (2017).
pubmed: 28167203
pmcid: 5402884
doi: 10.1016/j.jtho.2017.01.023
Harvey, R. D., Adams, V. R., Beardslee, T. & Medina, P. Afatinib for the treatment of EGFR mutation-positive NSCLC: a review of clinical findings. J. Oncol. Pharm. Pract. 26, 1461–1474 (2020).
pubmed: 32567494
pmcid: 7448811
doi: 10.1177/1078155220931926
Park, K. et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 17, 577–589 (2016).
pubmed: 27083334
doi: 10.1016/S1470-2045(16)30033-X
Shen, X. et al. A systematic analysis of the resistance and sensitivity of HER2
pubmed: 26391018
doi: 10.3109/10799893.2015.1049361
Miyazaki, M. et al. The p53 activator overcomes resistance to ALK inhibitors by regulating p53-target selectivity in ALK-driven neuroblastomas. Cell Death Discov. 4, 56 (2018).
pubmed: 29760954
pmcid: 5945735
doi: 10.1038/s41420-018-0059-0
Dey, P. et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature 542, 119–123 (2017).
pubmed: 28099419
pmcid: 5398413
doi: 10.1038/nature21052
Muller, F. L., Aquilanti, E. A. & DePinho, R. A. Collateral lethality: a new therapeutic strategy in oncology. Trends Cancer 1, 161–173 (2015).
pubmed: 26870836
pmcid: 4746004
doi: 10.1016/j.trecan.2015.10.002
Hsiehchen, D. et al. DNA repair gene mutations as predictors of immune checkpoint inhibitor response beyond tumor mutation burden. Cell Rep. Med. 1, 100034 (2020).
pubmed: 32676589
pmcid: 7365618
doi: 10.1016/j.xcrm.2020.100034
Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).
pubmed: 25765070
pmcid: 4993154
doi: 10.1126/science.aaa1348
Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).
pubmed: 29658845
pmcid: 7193684
doi: 10.1056/NEJMoa1801946
Ready, N. et al. First-line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J. Clin. Oncol. 37, 992–1000 (2019).
pubmed: 30785829
pmcid: 6494267
doi: 10.1200/JCO.18.01042
Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).
pubmed: 31666701
doi: 10.1038/s41586-019-1694-1
Yang, L. et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 5, 8 (2020).
pubmed: 32296030
pmcid: 7005297
doi: 10.1038/s41392-020-0110-5
Medema, J. P. & Vermeulen, L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474, 318–326 (2011).
pubmed: 21677748
doi: 10.1038/nature10212
Jørsboe, E., Hanghøj, K. & Albrechtsen, A. fastNGSadmix: admixture proportions and principal component analysis of a single NGS sample. Bioinformatics 33, 3148–3150 (2017).
pubmed: 28957500
doi: 10.1093/bioinformatics/btx474
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
pubmed: 23396013
pmcid: 3833702
doi: 10.1038/nbt.2514
Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).
pubmed: 30013048
doi: 10.1038/s41592-018-0051-x
Freed, D., Pan, R. & Aldana, R. TNscope: accurate detection of somatic mutations with haplotype-based variant candidate detection and machine learning filtering. Preprint at bioRxiv https://doi.org/10.1101/250647 (2018).
Zhu, B. et al. The genomic and epigenomic evolutionary history of papillary renal cell carcinomas. Nat. Commun. 11, 3096 (2020).
pubmed: 32555180
pmcid: 7303129
doi: 10.1038/s41467-020-16546-5
Karczewski, K. J. et al. The mutational constraints spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654
pmcid: 7334197
doi: 10.1038/s41586-020-2308-7
Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423–E2429 (2015).
pubmed: 25703262
pmcid: 7350419
doi: 10.1002/humu.22771
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
pubmed: 20601685
pmcid: 2938201
doi: 10.1093/nar/gkq603
Hasan, M. S., Wu, X., Watson, L. T. & Zhang, L. UPS-indel: a universal positioning system for indels. Sci. Rep. 7, 14106 (2017).
pubmed: 29074871
pmcid: 5658412
doi: 10.1038/s41598-017-14400-1
Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. 7, a026625 (2017).
pubmed: 28270531
pmcid: 5538405
doi: 10.1101/cshperspect.a026625
Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).
pubmed: 22608083
pmcid: 3428864
doi: 10.1016/j.cell.2012.04.023
Scott, A. D. et al. CharGer: clinical Characterization of Germline variants. Bioinformatics 35, 865–867 (2019).
pubmed: 30102335
doi: 10.1093/bioinformatics/bty649
Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).
pubmed: 26582918
doi: 10.1093/nar/gkv1222
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).
pubmed: 29056346
pmcid: 5720395
doi: 10.1016/j.cell.2017.09.042
Muiños, F., Martínez-Jiménez, F., Pich, O., Gonzalez-Perez, A. & Lopez-Bigas, N. In silico saturation mutagenesis of cancer genes. Nature 596, 428–432 (2021).
pubmed: 34321661
doi: 10.1038/s41586-021-03771-1
Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).
pubmed: 21527027
pmcid: 3218867
doi: 10.1186/gb-2011-12-4-r41
Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4, 175–185 (2014).
pubmed: 24436049
pmcid: 4293454
doi: 10.1158/2159-8290.CD-13-0285
Yang, L. et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153, 919–929 (2013).
pubmed: 23663786
pmcid: 3704973
doi: 10.1016/j.cell.2013.04.010
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).
pubmed: 32025012
pmcid: 7025897
doi: 10.1038/s41586-019-1913-9
Ding, Z. et al. Estimating telomere length from whole genome sequence data. Nucleic Acids Res. 42, e75 (2014).
pubmed: 24609383
pmcid: 4027178
doi: 10.1093/nar/gku181
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592
pmcid: 3776390
doi: 10.1038/nature12477
Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).
pubmed: 26372948
pmcid: 4747795
doi: 10.1038/nbt.3344
Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat. Commun. 5, 2997 (2014).
pubmed: 24429703
doi: 10.1038/ncomms3997
Luce, R. D. Individual Choice Behavior: a Theoretical Analysis (Wiley, 1959).
Plackett, R. L. The analysis of permutations. Appl. Stat. 24, 193 (1975).
doi: 10.2307/2346567