Genome-wide prediction of cauliflower miRNAs and lncRNAs and their roles in post-transcriptional gene regulation.

Brassica oleracea Long non-coding RNA Non-coding genome Post-transcriptional gene regulation microRNA

Journal

Planta
ISSN: 1432-2048
Titre abrégé: Planta
Pays: Germany
ID NLM: 1250576

Informations de publication

Date de publication:
14 Sep 2021
Historique:
received: 20 04 2021
accepted: 13 07 2021
entrez: 14 9 2021
pubmed: 15 9 2021
medline: 18 9 2021
Statut: epublish

Résumé

We have predicted miRNAs, their targets and lncRNAs from the genome of Brassica oleracea along with their functional annotation. Selected miRNAs and their targets are experimentally validated. Roles of these non-coding RNAs in post-transcriptional gene regulation are also deciphered. Cauliflower (Brassica oleracea var. Botrytis) is an important vegetable crop for its dietary and medicinal values with rich source of vitamins, dietary fibers, flavonoids and antioxidants. MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs), which regulate gene expression by inhibiting translation or by degrading messenger RNAs (mRNAs). On the other hand, long non-coding RNAs (lncRNAs) are responsible for the up regulation and the down regulation of transcription. Although the genome of cauliflower is reported, yet the roles of these ncRNAs in post-transcriptional gene regulation (PTGR) remain elusive. In this study, we have computationally predicted 355 miRNAs, of which 280 miRNAs are novel compared to miRBase 22.1. All the predicted miRNAs belong to 121 different families. We have also identified 934 targets of 125 miRNAs along with their functional annotation. These targets are further classified into biological processes, molecular functions and cellular components. Moreover, we have predicted 634 lncRNAs, of which 61 are targeted by 30 novel miRNAs. Randomly chosen 10 miRNAs and 10 lncRNAs are experimentally validated. Five miRNA targets including squamosa promoter-binding-like protein 9, homeobox-leucine zipper protein HDG12-like, NAC domain-containing protein 100, CUP-SHAPED COTYLEDON 1 and kinesin-like protein NACK2 of four miRNAs including bol-miR156a, bol-miR162a, bol-miR164d and bol-miR2673 are also experimentally validated. We have built network models of interactions between miRNAs and their target mRNAs, as well as between miRNAs and lncRNAs. Our findings enhance the knowledge of non-coding genome of cauliflower and their roles in PTGR, and might play important roles in improving agronomic traits of this economically important crop.

Identifiants

pubmed: 34519918
doi: 10.1007/s00425-021-03689-y
pii: 10.1007/s00425-021-03689-y
doi:

Substances chimiques

MicroRNAs 0
RNA, Long Noncoding 0
RNA, Messenger 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

72

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Ahmed FA, Ali RFM (2013) Bioactive compounds and antioxidant activity of fresh and processed white cauliflower. BioMed Res Int. https://doi.org/10.1155/2013/367819
doi: 10.1155/2013/367819 pubmed: 24171164 pmcid: 3793502
Ahmed W, Li R, Xia Y et al (2020a) Comparative analysis of miRNA expression profiles between heat-tolerant and heat-sensitive genotypes of flowering chinese cabbage under heat stress using high-throughput sequencing. Genes 11:264. https://doi.org/10.3390/genes11030264
doi: 10.3390/genes11030264 pmcid: 7140848
Ahmed W, Xia Y, Li R et al (2020b) Non-coding RNAs: functional roles in the regulation of stress response in Brassica crops. Genomics 112:1419–1424. https://doi.org/10.1016/j.ygeno.2019.08.011
doi: 10.1016/j.ygeno.2019.08.011 pubmed: 31430515
Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
doi: 10.1016/S0022-2836(05)80360-2 pubmed: 2231712
Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426. https://doi.org/10.1016/j.tplants.2007.08.003
doi: 10.1016/j.tplants.2007.08.003 pubmed: 17698401
Bai B, Bian H, Zeng Z et al (2017) miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol 58:426–439. https://doi.org/10.1093/pcp/pcw211
doi: 10.1093/pcp/pcw211 pubmed: 28064248
Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinforma Oxf Engl 27:1653–1659. https://doi.org/10.1093/bioinformatics/btr261
doi: 10.1093/bioinformatics/btr261
Bateman A, Martin MJ, O’Donovan C et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099
doi: 10.1093/nar/gkw1099
Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. https://doi.org/10.1093/nar/27.2.573
doi: 10.1093/nar/27.2.573 pubmed: 9862982 pmcid: 148217
Boerner S, McGinnis KM (2012) Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS ONE 7:e43047. https://doi.org/10.1371/journal.pone.0043047
doi: 10.1371/journal.pone.0043047 pubmed: 22916204 pmcid: 3420876
Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568. https://doi.org/10.1093/bioinformatics/btq233
doi: 10.1093/bioinformatics/btq233 pubmed: 20430753
Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025. https://doi.org/10.1126/science.1088060
doi: 10.1126/science.1088060 pubmed: 12893888
Chen X, Zhang Z, Liu D et al (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52:946–951. https://doi.org/10.1111/j.1744-7909.2010.00987.x
doi: 10.1111/j.1744-7909.2010.00987.x pubmed: 20977652
Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549. https://doi.org/10.1038/ng2001
doi: 10.1038/ng2001 pubmed: 17369828
Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46:W49–W54. https://doi.org/10.1093/nar/gky316
doi: 10.1093/nar/gky316 pubmed: 29718424 pmcid: 6030838
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00378
doi: 10.3389/fpls.2017.00378 pubmed: 28382044 pmcid: 5360763
Ellerström M, Stålberg K, Ezcurra I, Rask L (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol 32:1019–1027. https://doi.org/10.1007/BF00041385
doi: 10.1007/BF00041385 pubmed: 9002600
Elliott KA, Shirsat AH (1998) Promoter regions of the extA extensin gene from Brassica napus control activation in response to wounding and tensile stress. Plant Mol Biol 37:675–687. https://doi.org/10.1023/a:1005918816630
doi: 10.1023/a:1005918816630 pubmed: 9687071
Ezcurra I, Ellerström M, Wycliffe P et al (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709. https://doi.org/10.1023/a:1006206124512
doi: 10.1023/a:1006206124512 pubmed: 10480393
FAOSTAT (2017) Faostat: food and agriculture data. FAOSTAT, Rome
Geng M, Li H, Jin C et al (2014) Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Planta 239:341–356. https://doi.org/10.1007/s00425-013-1986-x
doi: 10.1007/s00425-013-1986-x pubmed: 24170336
Griffiths-Jones S, Grocock RJ, van Dongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140-144. https://doi.org/10.1093/nar/gkj112
doi: 10.1093/nar/gkj112 pubmed: 16381832
Hossain MS, Hoang NT, Yan Z et al (2019) Characterization of the spatial and temporal expression of two soybean miRNAs identifies SCL6 as a novel regulator of soybean nodulation. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00475
doi: 10.3389/fpls.2019.00475 pubmed: 32117326 pmcid: 6477095
Huang J, Li Z, Zhao D (2016) Deregulation of the OsmiR160 target gene OsARF18 Causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep. https://doi.org/10.1038/srep29938
doi: 10.1038/srep29938 pubmed: 28442743 pmcid: 5180244
Jia G, Zeng L, Zhao S et al (2018) Monitoring residue levels and dietary risk assessment of pymetrozine for Chinese consumption of cauliflower. Biomed Chromatogr BMC. https://doi.org/10.1002/bmc.4455
doi: 10.1002/bmc.4455 pubmed: 30536397
Jiao Y, Wang Y, Xue D et al (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544. https://doi.org/10.1038/ng.591
doi: 10.1038/ng.591 pubmed: 20495565
Kang Y-J, Yang D-C, Kong L et al (2017) CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 45:W12–W16. https://doi.org/10.1093/nar/gkx428
doi: 10.1093/nar/gkx428 pubmed: 28521017 pmcid: 28521017
Kasschau KD, Xie Z, Allen E et al (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with arabidopsis development and miRNA function. Dev Cell 4:205–217. https://doi.org/10.1016/S1534-5807(03)00025-X
doi: 10.1016/S1534-5807(03)00025-X pubmed: 12586064
Kim M, Cho J-S, Lee J-H et al (2018) Poplar MYB transcription factor PtrMYB012 and its Arabidopsis AtGAMYB orthologs are differentially repressed by the Arabidopsis miR159 family. Tree Physiol 38:801–812. https://doi.org/10.1093/treephys/tpx164
doi: 10.1093/treephys/tpx164 pubmed: 29301041
Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. https://doi.org/10.1093/nar/gkt1181
doi: 10.1093/nar/gkt1181 pubmed: 24275495
Kramer MF (2011) Stem-Loop RT-qPCR for miRNAs. Curr Protoc Mol Biol 95:15.10.1-15.10.15. https://doi.org/10.1002/0471142727.mb1510s95
doi: 10.1002/0471142727.mb1510s95
Larsson E, Sundström JF, Sitbon F, von Arnold S (2012) Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. Ann Bot 110:923–934. https://doi.org/10.1093/aob/mcs151
doi: 10.1093/aob/mcs151 pubmed: 22778149 pmcid: 3423809
Li H, Wang Y, Wang Z et al (2016a) Microarray and genetic analysis reveals that csa-miR159b plays a critical role in abscisic acid-mediated heat tolerance in grafted cucumber plants. Plant Cell Environ 39:1790–1804. https://doi.org/10.1111/pce.12745
doi: 10.1111/pce.12745 pubmed: 27037862
Li Y, Alonso-Peral M, Wong G et al (2016b) Ubiquitous miR159 repression of MYB33/65 in Arabidopsis rosettes is robust and is not perturbed by a wide range of stresses. BMC Plant Biol 16:179. https://doi.org/10.1186/s12870-016-0867-4
doi: 10.1186/s12870-016-0867-4 pubmed: 27542984 pmcid: 4992245
Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057. https://doi.org/10.1111/j.1365-313X.2010.04216.x
doi: 10.1111/j.1365-313X.2010.04216.x pubmed: 20374528
Lu S, Li Q, Wei H et al (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci 110:10848–10853. https://doi.org/10.1073/pnas.1308936110
doi: 10.1073/pnas.1308936110 pubmed: 23754401 pmcid: 3696765
Lukasik A, Pietrykowska H, Paczek L et al (2013) High-throughput sequencing identification of novel and conserved miRNAs in the Brassica oleracea leaves. BMC Genomics 14:801. https://doi.org/10.1186/1471-2164-14-801
doi: 10.1186/1471-2164-14-801 pubmed: 24245539 pmcid: 3840582
Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10:925–933. https://doi.org/10.4161/rna.24604
doi: 10.4161/rna.24604 pubmed: 23696037
Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol CB 14:1035–1046. https://doi.org/10.1016/j.cub.2004.06.022
doi: 10.1016/j.cub.2004.06.022 pubmed: 15202996
Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375. https://doi.org/10.1105/tpc.105.031716
doi: 10.1105/tpc.105.031716 pubmed: 15829600 pmcid: 1091760
Moro B, Chorostecki U, Arikit S et al (2018) Efficiency and precision of microRNA biogenesis modes in plants. Nucleic Acids Res 46:10709–10723. https://doi.org/10.1093/nar/gky853
doi: 10.1093/nar/gky853 pubmed: 30289546 pmcid: 6237749
Nelson ADL, Forsythe ES, Devisetty UK et al (2016) A genomic analysis of factors driving lincRNA diversification: lessons from plants. G3 GenesGenomesGenetics 6:2881–2891. https://doi.org/10.1534/g3.116.030338
doi: 10.1534/g3.116.030338
Ng S-Y, Lin L, Soh BS, Stanton LW (2013) Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 29:461–468. https://doi.org/10.1016/j.tig.2013.03.002
doi: 10.1016/j.tig.2013.03.002 pubmed: 23562612
Nithin C, Patwa N, Thomas A et al (2015) Computational prediction of miRNAs and their targets in Phaseolus vulgaris using simple sequence repeat signatures. BMC Plant Biol. https://doi.org/10.1186/s12870-015-0516-3
doi: 10.1186/s12870-015-0516-3 pubmed: 26067253 pmcid: 4464996
Pan L, Zhao H, Yu Q et al (2017) miR397/Laccase gene mediated network improves tolerance to fenoxaprop-P-ethyl in Beckmannia syzigachne and Oryza sativa. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00879
doi: 10.3389/fpls.2017.00879 pubmed: 29379514 pmcid: 5733471
Paytuví Gallart A, Hermoso Pulido A, Martínez A, de Lagrán I et al (2016) GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Res 44:D1161–D1166. https://doi.org/10.1093/nar/gkv1215
doi: 10.1093/nar/gkv1215 pubmed: 26578586 pmcid: 26578586
Qu L, Lin L-B, Xue H-W (2019) Rice miR394 suppresses leaf inclination through targeting an F-box gene, LEAF INCLINATION 4. J Integr Plant Biol 61:406–416. https://doi.org/10.1111/jipb.12713
doi: 10.1111/jipb.12713 pubmed: 30144351
Raman S, Greb T, Peaucelle A et al (2008) Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J 55:65–76. https://doi.org/10.1111/j.1365-313X.2008.03483.x
doi: 10.1111/j.1365-313X.2008.03483.x pubmed: 18346190
Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet TIG 16:276–277
doi: 10.1016/S0168-9525(00)02024-2
Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell 146:353–358. https://doi.org/10.1016/j.cell.2011.07.014
doi: 10.1016/j.cell.2011.07.014 pubmed: 21802130 pmcid: 3235919
Stålberg K, Ellerstöm M, Ezcurra I et al (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–519. https://doi.org/10.1007/BF00195181
doi: 10.1007/BF00195181 pubmed: 8818291
Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80:17–36. https://doi.org/10.1007/s11103-011-9817-6
doi: 10.1007/s11103-011-9817-6 pubmed: 21874378
Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. https://doi.org/10.1105/tpc.104.022830
doi: 10.1105/tpc.104.022830 pubmed: 15258262 pmcid: 519194
Turner M, Nizampatnam NR, Baron M et al (2013) Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean1 [W] [OPEN]. Plant Physiol 162:2042–2055. https://doi.org/10.1104/pp.113.220699
doi: 10.1104/pp.113.220699 pubmed: 23796794 pmcid: 3729781
Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596
doi: 10.1093/nar/gks596 pubmed: 22730293 pmcid: 22730293
Wang J, Liu X, Wu H et al (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38:5366–5383. https://doi.org/10.1093/nar/gkq285
doi: 10.1093/nar/gkq285 pubmed: 20423907 pmcid: 2938198
Wang J, Yang X, Xu H et al (2012) Identification and characterization of microRNAs and their target genes in Brassica oleracea. Gene 505:300–308. https://doi.org/10.1016/j.gene.2012.06.002
doi: 10.1016/j.gene.2012.06.002 pubmed: 22688123
Wang L, Park HJ, Dasari S et al (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74–e74. https://doi.org/10.1093/nar/gkt006
doi: 10.1093/nar/gkt006 pubmed: 23335781 pmcid: 3616698
Wang C-Y, Zhang S, Yu Y et al (2014) MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J 12:1132–1142. https://doi.org/10.1111/pbi.12222
doi: 10.1111/pbi.12222 pubmed: 24975689
Windels D, Bielewicz D, Ebneter M et al (2014) miR393 is required for production of proper auxin signalling outputs. PLoS ONE 9:e95972. https://doi.org/10.1371/journal.pone.0095972
doi: 10.1371/journal.pone.0095972 pubmed: 24763336 pmcid: 3999107
Wu G, Park MY, Conway SR et al (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759. https://doi.org/10.1016/j.cell.2009.06.031
doi: 10.1016/j.cell.2009.06.031 pubmed: 19703400 pmcid: 2732587
Xie M, Zhang S, Yu B (2015) microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci CMLS 72:87–99. https://doi.org/10.1007/s00018-014-1728-7
doi: 10.1007/s00018-014-1728-7 pubmed: 25209320
Yang C-Y, Spielman M, Coles JP et al (2003) TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J Cell Mol Biol 34:229–240. https://doi.org/10.1046/j.1365-313x.2003.01713.x
doi: 10.1046/j.1365-313x.2003.01713.x
Yoon J-H, Abdelmohsen K, Gorospe M (2014) Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol 34:9–14. https://doi.org/10.1016/j.semcdb.2014.05.015
doi: 10.1016/j.semcdb.2014.05.015 pubmed: 24965208 pmcid: 24965208
Yu Y, Jia T, Chen X (2017) The “how” and “where” of plant microRNAs. New Phytol 216:1002–1017. https://doi.org/10.1111/nph.14834
doi: 10.1111/nph.14834 pubmed: 29048752 pmcid: 6040672
Yuan X, Wang H, Cai J et al (2019) NAC transcription factors in plant immunity. Phytopathol Res 1:1–13. https://doi.org/10.1186/s42483-018-0008-0
doi: 10.1186/s42483-018-0008-0
Zhang B, Pan X, Anderson TA (2006a) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762. https://doi.org/10.1016/j.febslet.2006.05.063
doi: 10.1016/j.febslet.2006.05.063 pubmed: 16780841
Zhang B, Pan X, Cobb GP, Anderson TA (2006b) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16. https://doi.org/10.1016/j.ydbio.2005.10.036
doi: 10.1016/j.ydbio.2005.10.036 pubmed: 16325172
Zhang BH, Pan XP, Cox SB et al (2006c) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci CMLS 63:246–254. https://doi.org/10.1007/s00018-005-5467-7
doi: 10.1007/s00018-005-5467-7 pubmed: 16395542
Zhang J, Wei L, Jiang J et al (2018) Genome-wide identification, putative functionality and interactions between lncRNAs and miRNAs in Brassica species. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-23334-1
doi: 10.1038/s41598-018-23334-1
Zhao Y, Wen H, Teotia S et al (2017) Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.). BMC Plant Biol 17:215. https://doi.org/10.1186/s12870-017-1171-7
doi: 10.1186/s12870-017-1171-7 pubmed: 29162059 pmcid: 5699021
Zhou L, Liu Y, Liu Z et al (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168. https://doi.org/10.1093/jxb/erq237
doi: 10.1093/jxb/erq237 pubmed: 20729483
Zhu Q-H, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495. https://doi.org/10.1093/jxb/erq295
doi: 10.1093/jxb/erq295 pubmed: 20952628 pmcid: 20952628

Auteurs

Moumita Roy Chowdhury (MR)

Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.

Ranjit Prasad Bahadur (RP)

Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.

Jolly Basak (J)

Department of Biotechnology, Visva-Bharati University, Santiniketan, 731235, India. jolly.basak@visva-bharati.ac.in.

Articles similaires

Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Animals Lung India Sheep Transcriptome

Classifications MeSH