Photocatalysis in Supramolecular Fluorescent Metallacycles and Metallacages.
Photocatalysis
metallacages
metallacycles
photo-induced electron transfer
supramolecular chemistry
Journal
Chemistry, an Asian journal
ISSN: 1861-471X
Titre abrégé: Chem Asian J
Pays: Germany
ID NLM: 101294643
Informations de publication
Date de publication:
01 Dec 2021
01 Dec 2021
Historique:
revised:
13
09
2021
received:
12
08
2021
pubmed:
17
9
2021
medline:
16
12
2021
entrez:
16
9
2021
Statut:
ppublish
Résumé
The utilization of photocatalytic techniques for achieving light-to-fuel conversion is a promising way to ease the shortage of energy and degradation of the ecological environment. Fluorescent metallacycles and metallacages have drawn considerable attention and have been used in widespread fields due to easy preparation and their abundant functionality including photocatalysis. This review covers recent advances in photocatalysis in discrete supramolecular fluorescent metallacycles and metallacages. The developments in the utilization of the metallacycles skeletons and the effect of fluorescence-resonance energy transfer for photocatalysis are discussed. Furthermore, the use of the ligands decorated by organic chromophores or redox metal sites in metallacages as photocatalysts and their ability to encapsulate appropriate catalytic cofactors for photocatalysis are summarized. For the sake of brevity, macrocycles and cages with inorganic coordination complexes such as ruthenium complexes and iridium complexes are not included in this minireview.
Identifiants
pubmed: 34529337
doi: 10.1002/asia.202100942
doi:
Substances chimiques
Fluorescent Dyes
0
Macromolecular Substances
0
Organometallic Compounds
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
3805-3816Subventions
Organisme : National Nature Science Foundation of China
ID : 21871092
Organisme : Program of Shanghai Outstanding Academic Leaders
ID : 21XD1421200
Organisme : Fundamental Research Funds for the Central Universities
Organisme : Opening Projects of Shanghai Key Laboratory of Green Chemistry and Chemical Processes
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
Y. L. Pang, S. Lim, H. C. Ong, W. T. Chong, Ultrason. Sonochem. 2016, 29, 317-327;
C. H. Hak, L. C. Sim, K. H. Leong, P. F. Lim, Y. H. Chin, P. Saravanan, Environ. Sci. Pollut. Res. Int. 2018, 25, 25401-25412.
M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898-6926.
I. Ghosh, B. Konig, Angew. Chem. Int. Ed. 2016, 55, 7676-7679;
Angew. Chem. 2016, 128, 7806-7810.
J. D. Tibbetts, D. R. Carbery, E. A. C. Emanuelsson, ACS Sustainable Chem. Eng. 2017, 5, 9826-9835.
J. Z. Zhao, K. J. Xu, W. B. Yang, Z. J. Wang, F. F. Zhong, Chem. Soc. Rev. 2015, 44, 8904-8939.
P. Chen, L. Blaney, G. Cagnetta, J. Huang, B. Wang, Y. J. Wang, S. B. Deng, G. Yu, Environ. Sci. Technol. 2019, 53, 1564-1575.
A. J. Esswein, D. G. Nocera, Chem. Rev. 2007, 107, 4022-4047.
C. J. Pedersen, Angew. Chem. Int. Ed. 1988, 27, 1021-1027;
Angew. Chem. 1988, 100, 1053-1059.
J. M. Lehn, Angew. Chem. Int. Ed. 1988, 27, 89-112;
Angew. Chem. 1988, 100, 91-116.
D. J. Cram, Angew. Chem. Int. Ed. Engl. 1988, 27, 1009-1020.
P. J. Stang, D. H. Cao, J. Am. Chem. Soc. 1994, 116, 4981-4982;
P. J. Stang, B. Olenyuk, Acc. Chem. Res. 1997, 30, 502-518;
S. R. Seidel, P. J. Stang, Acc. Chem. Res. 2002, 35, 972-983;
Y. R. Zheng, Z. G. Zhao, M. Wang, K. Ghosh, J. B. Pollock, T. R. Cook, P. J. Stang, J. Am. Chem. Soc. 2010, 132, 16873-16882.
M. Fujita, Chem. Soc. Rev. 1998, 27, 417-425;
M. Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem. Res. 2005, 38, 369-378;
Q. F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi, M. Fujita, Science 2010, 328, 1144-1147;
T. Sawada, H. Hisada, M. Fujita, J. Am. Chem. Soc. 2014, 136, 4449-4451.
D. L. Caulder, K. N. Raymond, J. Chem. Soc. Dalton Trans. 1999, 1185-1200;
D. L. Caulder, K. N. Raymond, Acc. Chem. Res. 1999, 32, 975-982;
M. D. Pluth, R. G. Bergman, K. N. Raymond, Science 2007, 316, 85-88.
B. J. Holliday, C. A. Mirkin, Angew. Chem. Int. Ed. 2001, 40, 2022-2043;
Angew. Chem. 2001, 113, 2076-2097;
N. C. Gianneschi, M. S. Masar, C. A. Mirkin, Acc. Chem. Res. 2005, 38, 825-837;
C. G. Oliveri, P. A. Ulmann, M. J. Wiester, C. A. Mirkin, Acc. Chem. Res. 2008, 41, 1618-1629.
P. Mal, D. Schultz, K. Beyeh, K. Rissanen, J. R. Nitschke, Angew. Chem. Int. Ed. 2008, 47, 8297-8301;
Angew. Chem. 2008, 120, 8421-8425;
P. Mal, B. Breiner, K. Rissanen, J. R. Nitschke, Science 2009, 324, 1697-1699;
J. R. Nitschke, Acc. Chem. Res. 2007, 40, 103-112;
D. W. Zhang, T. K. Ronson, J. R. Nitschke, Acc. Chem. Res. 2018, 51, 2423-2436.
S. Hiraoka, M. Goda, M. Shionoya, J. Am. Chem. Soc. 2009, 131, 4592-4593;
L. J. Chen, H. B. Yang, M. Shionoya, Chem. Soc. Rev. 2017, 46, 2555-2576.
G. H. Ning, L. Y. Yao, L. X. Liu, T. Z. Xie, Y. Z. Li, Y. Qin, Y. J. Pan, S. Y. Yu, Inorg. Chem. 2010, 49, 7783-7792;
C. C. You, F. Wurthner, J. Am. Chem. Soc. 2003, 125, 9716-9725;
S. De, K. Mahata, M. Schmittel, Chem. Soc. Rev. 2010, 39, 1555-1575.
N. Nishiwaki, J. Oleo Sci. 2018, 67, 11-19.
S. Chen, K. Li, F. Zhao, L. Zhang, M. Pan, Y. Z. Fan, J. Guo, J. Shi, C. Y. Su, Nat. Commun. 2016, 7, 13169;
X. Li, J. Wu, L. Chen, X. Zhong, C. He, R. Zhang, C. Duan, Chem. Commun. 2016, 52, 9628-9631;
M. Schulze, V. Kunz, P. D. Frischmann, F. Wurthner, Nat. Chem. 2016, 8, 576-583;
J. Guo, Y. W. Xu, K. Li, L. M. Xiao, S. Chen, K. Wu, X. D. Chen, Y. Z. Fan, J. M. Liu, C. Y. Su, Angew. Chem. Int. Ed. Engl. 2017, 56, 3852-3856;
J. Guo, Y. Z. Fan, Y. L. Lu, S. P. Zheng, C. Y. Su, Angew. Chem. Int. Ed. Engl. 2020, 59, 8661-8669;
A. L. Meza-Chincha, D. Schindler, M. Natali, F. Würthner, ChemPhotoChem 2020, 5, 173-183;
J. S. Wang, K. Wu, C. Yin, K. Li, Y. Huang, J. Ruan, X. Feng, P. Hu, C. Y. Su, Nat. Commun. 2020, 11, 4675;
K. Wu, K. Li, S. Chen, Y. J. Hou, Y. L. Lu, J. S. Wang, M. J. Wei, M. Pan, C. Y. Su, Angew. Chem. Int. Ed. Engl. 2020, 59, 2639-2643;
N. Noll, F. Wurthner, Chem. Eur. J. 2021, 27, 444-450.
M. Yoshizawa, Y. Takeyama, T. Kusukawa, M. Fujita, Angew. Chem. Int. Ed. 2002, 41, 1347-1349;
Angew. Chem. 2002, 114, 1403-1405;
M. Yoshizawa, Y. Takeyama, T. Okano, M. Fujita, J. Am. Chem. Soc. 2003, 125, 3243-3247;
K. Takaoka, M. Kawano, T. Ozeki, M. Fujita, Chem. Commun. 2006, 1625-1627;
Y. Nishioka, T. Yamaguchi, M. Kawano, M. Fujita, J. Am. Chem. Soc. 2008, 130, 8160-8161;
T. Furusawa, M. Kawano, M. Fujita, Angew. Chem. Int. Ed. 2007, 46, 5717-5719;
Angew. Chem. 2007, 119, 5819-5821;
T. Yamaguchi, M. Fujita, Angew. Chem. Int. Ed. 2008, 47, 2067-2069;
Angew. Chem. 2008, 120, 2097-2099;
R. Gera, A. Das, A. Jha, J. Dasgupta, J. Am. Chem. Soc. 2014, 136, 15909-15912;
N. R. Lagesse, K. Y. L. Tan, J. D. Crowley, J. A. Findlay, Chem. Asian J. 2020, 15, 1567-1573.
Z. T. Shi, Y. X. Hu, Z. B. Hu, Q. Zhang, S. Y. Chen, M. Chen, J. J. Yu, G. Q. Yin, H. T. Sun, L. Xu, X. P. Li, B. Feringa, H. B. Yang, H. Tian, D. H. Qu, J. Am. Chem. Soc. 2021, 143, 442-452.
B. Shi, Z. Zhou, R. T. Vanderlinden, J.-H. Tang, G. Yu, K. Acharyya, H. Sepehrpour, P. J. Stang, J. Am. Chem. Soc. 2019, 141, 11837-11841.
Y. Qin, Y. Zhang, G. Q. Yin, Y. X. Wang, C. W. Zhang, L. J. Chen, H. W. Tan, X. P. Li, L. Xu, H. B. Yang, Chin. J. Chem. 2019, 37, 323-329.
Z. T. Li, X. Z. Yan, F. Huang, H. Sepehrpour, P. J. Stang, Org. Lett. 2017, 19, 5728-5731.
Q. C. Xia, J. Zhang, X. N. Chen, C. Cheng, D. D. Chu, X. H. Tang, H. Y. Li, Y. Cui, Coord. Chem. Rev. 2021, 435.
B. H. Northrop, H. B. Yang, P. J. Stang, Chem. Commun. (Camb.) 2008, 5896-5908.
L. Wu, C. Han, Z. Wang, X. Wu, F. Su, M. Li, Q. Zhang, X. Jing, Front. Chem. 2020, 8;
L. J. Chen, S. Chen, Y. Qin, L. Xu, G. Q. Yin, J. L. Zhu, F. F. Zhu, W. Zheng, X. Li, H. B. Yang, J. Am. Chem. Soc. 2018, 140, 5049-5052;
P. P. Jia, L. Xu, Y. X. Hu, W. J. Li, X. Q. Wang, Q. H. Ling, X. Shi, G. Q. Yin, X. Li, H. Sun, Y. Jiang, H. B. Yang, J. Am. Chem. Soc. 2021, 143, 399-408;
D. Zhang, W. Yu, S. Li, Y. Xia, X. Li, Y. Li, T. Yi, J. Am. Chem. Soc. 2021, 143, 1313-1317.
J. Y. Kou, D. Dou, L. M. Yang, Oncotarget. 2017, 8, 81591-81603.
M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233, 351-371.
Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, J. Am. Chem. Soc. 2017, 139, 1921-1927.
Z. Zhang, Z. Zhao, L. Wu, S. Lu, S. Ling, G. Li, L. Xu, L. Ma, Y. Hou, X. Wang, X. Li, G. He, K. Wang, B. Zou, M. Zhang, J. Am. Chem. Soc. 2020, 142, 2592-2600.
Y. K. Leng, K. Sun, X. Y. Chen, W. W. Li, Chem. Soc. Rev. 2015, 44, 5552-5595.
M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, Chem. Mater. 2006, 18, 3682-3692.
X. Jia, Q. Chen, Y. Yang, Y. Tang, R. Wang, Y. Xu, W. Zhu, X. Qian, J. Am. Chem. Soc. 2016, 138, 10778-10781.
C. B. Huang, L. Xu, J. L. Zhu, Y. X. Wang, B. Sun, X. Li, H. B. Yang, J. Am. Chem. Soc. 2017, 139, 9459-9462.
H. M. Watrob, C. P. Pan, M. D. Barkley, J. Am. Chem. Soc. 2003, 125, 7336-7343.
X. Z. Yan, T. R. Cook, P. Wang, F. H. Huang, P. J. Stang, Nat. Chem. 2015, 7, 342-348;
J. L. Zhu, L. Xu, Y. Y. Ren, Y. Zhang, X. Liu, G. Q. Yin, B. Sun, X. D. Cao, Z. Chen, X. L. Zhao, H. W. Tang, J. Q. Chen, X. P. Li, H. B. Yang, Nat. Commun. 2019, 10.
J. Zou, Z. Yin, K. Ding, Q. Tang, J. Li, W. Si, J. Shao, Q. Zhang, W. Huang, X. Dong, ACS Appl. Mater. Interfaces 2017, 9, 32475-32481;
C. S. Zhang, J. Z. Zhao, S. Wu, Z. L. Wang, W. H. Wu, J. Ma, S. Guo, L. Huang, J. Am. Chem. Soc. 2013, 135, 10566-10578.
S. J. Dalgarno, N. P. Power, J. L. Atwood, Coord. Chem. Rev. 2008, 252, 825-841;
J. W. Steed, Chem. Soc. Rev. 2009, 38, 506-519;
R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810-6918;
M. Han, D. M. Engelhard, G. H. Clever, Chem. Soc. Rev. 2014, 43, 1848-1860;
K. Acharyya, P. S. Mukherjee, Angew. Chem. Int. Ed. 2019, 58, 8640-8653;
Angew. Chem. 2019, 131, 8732-8745.
M. M. Zhang, M. L. Saha, M. Wang, Z. X. Zhou, B. Song, C. J. Lu, X. Z. Yan, X. P. Li, F. H. Huang, S. C. Yin, P. J. Stang, J. Am. Chem. Soc. 2017, 139, 5067-5074;
Z. Guo, G. Li, H. Wang, J. Zhao, Y. Liu, H. Tan, X. Li, P. J. Stang, X. Yan, J. Am. Chem. Soc. 2021, 143, 9215-9221.
D. W. Zhang, T. K. Ronson, Y. Q. Zou, J. R. Nitschke, Nat. Chem. Rev. 2021, 5, 168-182.
J. L. Zhu, D. Zhang, T. K. Ronson, W. Wang, L. Xu, H. B. Yang, J. R. Nitschke, Angew. Chem. Int. Ed. 2021, 60, 11789-11792;
H. Duan, Y. Li, Q. Li, P. Wang, X. Liu, L. Cheng, Y. Yu, L. Cao, Angew. Chem. Int. Ed. 2020, 59, 10101-10110;
Angew. Chem. 2020, 132, 10187-10196.
M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. Engl. 2009, 48, 3418-3438;
I. A. Bhat, A. Devaraj, E. Zangrando, P. S. Mukherjee, Chem. Eur. J. 2018, 24, 13938-13946.
E. G. Percastegui, T. K. Ronson, J. R. Nitschke, Chem. Rev. 2020, 120, 13480-13544.
X. Y. Zhang, K. N. Houk, Acc. Chem. Res. 2005, 38, 379-385.
J. Rebek, Acc. Chem. Res. 2009, 42, 1660-1668;
C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012-3035;
J. Murray, K. Kim, T. Ogoshi, W. Yao, B. C. Gibb, Chem. Soc. Rev. 2017, 46, 2479-2496;
Y. Fang, J. A. Powell, E. Li, Q. Wang, Z. Perry, A. Kirchon, X. Yang, Z. Xiao, C. Zhu, L. Zhang, F. Huang, H. C. Zhou, Chem. Soc. Rev. 2019, 48, 4707-4730;
E. G. Percástegui, V. Jancik, Coord. Chem. Rev. 2020, 407;
E. G. Percastegui, T. K. Ronson, J. R. Nitschke, Chem. Rev. 2020, 120, 13480-13544;
Y. Xue, X. Hang, J. Ding, B. Li, R. Zhu, H. Pang, Q. Xu, Coord. Chem. Rev. 2021, 430.
Z. Zhang, Z. Zhao, Y. Hou, H. Wang, X. Li, G. He, M. Zhang, Angew. Chem. Int. Ed. Engl. 2019, 58, 8862-8866.
Y. P. Qiao, L. Zhang, J. Li, W. Lin, Z. Q. Wang, Angew. Chem. Int. Ed. 2016, 55, 12778-12782;
Angew. Chem. 2016, 128, 12970-12974;
G. J. Chen, C. Q. Chen, X. T. Li, H. C. Ma, Y. B. Dong, Chem. Commun. 2018, 54, 11550-11553;
T. Gadzikwa, R. Bellini, H. L. Dekker, J. N. H. Reek, J. Am. Chem. Soc. 2012, 134, 2860-2863;
J. J. Jiao, C. X. Tan, Z. J. Li, Y. Liu, X. Han, Y. Cui, J. Am. Chem. Soc. 2018, 140, 2251-2259;
C. X. Tan, J. J. Jiao, Z. J. Li, Y. Liu, X. Han, Y. Cui, Angew. Chem. Int. Ed. 2018, 57, 2085-2090;
Angew. Chem. 2018, 130, 2107-2112;
L. R. Holloway, P. M. Bogie, Y. Lyon, C. Ngai, T. F. Miller, R. R. Julian, R. J. Hooley, J. Am. Chem. Soc. 2018, 140, 8078-8081.
Z. J. Zhao, B. R. He, B. Tang, Chem. Sci. 2015, 6, 5347-5365.
Y. N. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun. 2009, 4332-4353.
S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Proc. Natl. Acad. Sci. USA 2006, 103, 13765-13770;
Y. Xiang, B. Laurent, C. H. Hsu, S. Nachtergaele, Z. K. Lu, W. Q. Sheng, C. Y. Xu, H. C. Hen, O. Y. Jian, S. Q. Wang, D. Ling, P. H. Hsu, L. Zou, A. Jambhekar, C. Iie, Y. Shi, Nature 2017, 543, 573-576.
Y. Jin, H. Jiang, X. Tang, W. Zhang, Y. Liu, Y. Cui, Dalton Trans. 2021, 50, 8533-8539.
L. Yang, X. Jing, C. He, Z. Chang, C. Duan, Chem. Eur. J. 2016, 22, 18107-18114.
K. Gurunathan, P. Maruthamuthu, M. V. C. Sastri, Int. J. Hydrogen Energy 1997, 22, 57-62;
J. Zeng, W. D. Zeng, H. P. Zeng, J. Solid State Chem. 2017, 253, 294-304.
A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev. 1997, 97, 1515-1566.
H. Yu, C. He, J. Xu, C. Duan, J. N. H. Reek, Inorg. Chem. Front. 2016, 3, 1256-1263.
S. Qin, Y. Lei, J. F. Huang, L. M. Xiao, J. M. Liu, Chem. Asian J. 2021, 16.