Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level.
Journal
PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
27
05
2021
accepted:
26
07
2021
entrez:
17
9
2021
pubmed:
18
9
2021
medline:
15
12
2021
Statut:
epublish
Résumé
The immaturity of pluripotent stem cell (PSC)-derived tissues has emerged as a universal problem for their biomedical applications. While efforts have been made to generate adult-like cells from PSCs, direct benchmarking of PSC-derived tissues against in vivo development has not been established. Thus, maturation status is often assessed on an ad-hoc basis. Single cell RNA-sequencing (scRNA-seq) offers a promising solution, though cross-study comparison is limited by dataset-specific batch effects. Here, we developed a novel approach to quantify PSC-derived cardiomyocyte (CM) maturation through transcriptomic entropy. Transcriptomic entropy is robust across datasets regardless of differences in isolation protocols, library preparation, and other potential batch effects. With this new model, we analyzed over 45 scRNA-seq datasets and over 52,000 CMs, and established a cross-study, cross-species CM maturation reference. This reference enabled us to directly compare PSC-CMs with the in vivo developmental trajectory and thereby to quantify PSC-CM maturation status. We further found that our entropy-based approach can be used for other cell types, including pancreatic beta cells and hepatocytes. Our study presents a biologically relevant and interpretable metric for quantifying PSC-derived tissue maturation, and is extensible to numerous tissue engineering contexts.
Identifiants
pubmed: 34534204
doi: 10.1371/journal.pcbi.1009305
pii: PCOMPBIOL-D-21-00981
pmc: PMC8448341
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1009305Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL152249
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL156947
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM136577
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Open Biol. 2019 Jan 31;9(1):180177
pubmed: 30958120
Sci Rep. 2017 Jan 03;7:39921
pubmed: 28045081
Cell Stem Cell. 2019 Jul 3;25(1):87-102.e9
pubmed: 31271750
Nat Rev Genet. 2015 Mar;16(3):133-45
pubmed: 25628217
Stem Cell Res Ther. 2018 Dec 29;9(1):355
pubmed: 30594258
J Mater Chem B. 2016 May 28;4(20):3433-3442
pubmed: 27746914
Circ Res. 2019 Nov 8;125(11):936-953
pubmed: 31573406
Nat Commun. 2017 Jun 01;8:15599
pubmed: 28569836
Nat Biotechnol. 2018 Jun;36(5):421-427
pubmed: 29608177
Genome Biol. 2016 Feb 17;17:29
pubmed: 26887813
Cell Rep. 2015 Nov 24;13(8):1705-16
pubmed: 26586429
Hum Mol Genet. 2018 Aug 1;27(R2):R89-R98
pubmed: 29771306
Ups J Med Sci. 2016 May;121(2):155-8
pubmed: 26998806
Nat Commun. 2021 Mar 12;12(1):1648
pubmed: 33712605
Development. 2015 Sep 15;142(18):3231-8
pubmed: 26209647
Sci Rep. 2019 Jul 29;9(1):11005
pubmed: 31358845
Stem Cell Res Ther. 2014 Oct 20;5(5):117
pubmed: 25688759
Nat Commun. 2018 Oct 30;9(1):4434
pubmed: 30375391
Mol Cell. 2017 Feb 16;65(4):631-643.e4
pubmed: 28212749
Gastroenterology. 2018 Apr;154(5):1258-1272
pubmed: 29428334
Cell Syst. 2019 Aug 28;9(2):207-213.e2
pubmed: 31377170
Nat Biotechnol. 2019 May;37(5):547-554
pubmed: 30936559
Sci Rep. 2020 Jan 30;10(1):1535
pubmed: 32001747
Reproduction. 2018 Oct 16;156(5):R143-R153
pubmed: 30325181
Hepatology. 2017 Nov;66(5):1662-1674
pubmed: 28640507
Cell. 2013 Aug 1;154(3):484-9
pubmed: 23911316
Science. 2020 Jan 24;367(6476):405-411
pubmed: 31974247
Annu Rev Biomed Eng. 2014 Jul 11;16:277-94
pubmed: 24905879
Dev Cell. 2016 Nov 21;39(4):480-490
pubmed: 27840107
Adv Drug Deliv Rev. 2016 Jan 15;96:110-34
pubmed: 25956564
Cell. 2014 Aug 14;158(4):903-915
pubmed: 25126793
Mitochondrion. 2016 Jul;29:59-64
pubmed: 27181048
Nucleic Acids Res. 2017 Apr 20;45(7):e54
pubmed: 27998929
Genome Biol. 2019 Sep 9;20(1):194
pubmed: 31500660
Stem Cells Int. 2018 Dec 5;2018:9068203
pubmed: 30627175
Nat Commun. 2018 Jul 26;9(1):2937
pubmed: 30050112
Genome Biol. 2020 Jan 16;21(1):12
pubmed: 31948481
Cell Syst. 2021 Jun 16;12(6):670-687.e10
pubmed: 34043964
Methods Mol Biol. 2019;1935:125-139
pubmed: 30758824
Bioinformatics. 2017 Apr 15;33(8):1179-1186
pubmed: 28088763
Int J Mol Sci. 2018 Sep 05;19(9):
pubmed: 30189626
Circulation. 2018 Mar 20;137(12):e67-e492
pubmed: 29386200
Front Med (Lausanne). 2019 Nov 15;6:265
pubmed: 31803747
Circ Res. 2019 Aug 16;125(5):567-569
pubmed: 31415233
Front Cell Dev Biol. 2017 May 05;5:50
pubmed: 28529939
Nat Cell Biol. 2020 Jan;22(1):108-119
pubmed: 31915373
J Physiol. 2020 Jul;598(14):2941-2956
pubmed: 30571853
Nat Commun. 2020 May 22;11(1):2585
pubmed: 32444791
Cell Div. 2013 Jun 20;8(1):8
pubmed: 23786799
Basic Res Cardiol. 2019 Aug 9;114(5):36
pubmed: 31399804
Nature. 2018 Oct;562(7727):367-372
pubmed: 30283141
Nat Rev Genet. 2019 Jul;20(7):377-388
pubmed: 30737492
Cell Stem Cell. 2016 Aug 4;19(2):266-277
pubmed: 27345837
Mol Syst Biol. 2019 Jun 19;15(6):e8746
pubmed: 31217225
Methods. 2014 Jun 1;67(3):282-93
pubmed: 24675401
J Biol Eng. 2019 Jun 28;13:57
pubmed: 31297148
Nat Commun. 2021 Jul 21;12(1):4442
pubmed: 34290256
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9709-14
pubmed: 18606989
Gigascience. 2018 Jun 1;7(6):
pubmed: 29846586
Nat Methods. 2014 Feb;11(2):163-6
pubmed: 24363023
J Cardiovasc Pharmacol. 2012 Oct;60(4):408-16
pubmed: 22240913