Biocatalytic, Intermolecular C-H Bond Functionalization for the Synthesis of Enantioenriched Amides.
P411 enzymes
asymmetric C−H functionalization
biocatalysis
nitrene transfer
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
15 11 2021
15 11 2021
Historique:
revised:
16
09
2021
received:
12
08
2021
pubmed:
18
9
2021
medline:
29
12
2021
entrez:
17
9
2021
Statut:
ppublish
Résumé
Directed evolution of heme proteins has opened access to new-to-nature enzymatic activity that can be harnessed to tackle synthetic challenges. Among these, reactions resulting from active site iron-nitrenoid intermediates present a powerful strategy to forge C-N bonds with high site- and stereoselectivity. Here we report a biocatalytic, intermolecular benzylic C-H amidation reaction operating at mild and scalable conditions. With hydroxamate esters as nitrene precursors, feedstock aromatic compounds can be converted to chiral amides with excellent enantioselectivity (up to >99 % ee) and high yields (up to 87 %). Kinetic and computational analysis of the enzymatic reaction reveals rate-determining nitrenoid formation followed by stepwise hydrogen atom transfer-mediated C-H functionalization.
Identifiants
pubmed: 34534409
doi: 10.1002/anie.202110873
pmc: PMC8578410
mid: NIHMS1741559
doi:
Substances chimiques
Amides
0
Hemeproteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
24864-24869Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM125887
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01GM125887
Pays : United States
Organisme : American Chemical Society
ID : ACSGCIPR 2020
Organisme : National Science Foundation
ID : ACI-1548562
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
Nat Chem. 2019 Nov;11(11):987-993
pubmed: 31611634
Nature. 2019 Jan;565(7737):67-72
pubmed: 30568304
Chem Rev. 2017 Jul 12;117(13):9247-9301
pubmed: 28051855
Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9886-9890
pubmed: 28614619
J Med Chem. 2011 May 26;54(10):3451-79
pubmed: 21504168
Angew Chem Int Ed Engl. 2012 Mar 26;51(13):3066-72
pubmed: 22392731
Angew Chem Int Ed Engl. 2019 Dec 9;58(50):18154-18158
pubmed: 31593365
J Am Chem Soc. 2020 Aug 12;142(32):13996-14004
pubmed: 32667782
Chem Soc Rev. 2018 Dec 7;47(23):8925-8967
pubmed: 30426998
Curr Opin Biotechnol. 2017 Oct;47:102-111
pubmed: 28711855
ACS Catal. 2015 Mar 6;5(3):1685-1691
pubmed: 25954592
Angew Chem Int Ed Engl. 2019 Mar 4;58(10):3138-3142
pubmed: 30600873
Science. 2018 Oct 26;362(6413):434-439
pubmed: 30361368
Nat Chem. 2017 Jul;9(7):629-634
pubmed: 28644476
Acc Chem Res. 2021 Mar 2;54(5):1209-1225
pubmed: 33491448
J Am Chem Soc. 2019 Dec 4;141(48):19048-19057
pubmed: 31751132
J Am Chem Soc. 2019 Mar 6;141(9):3849-3853
pubmed: 30785737
Org Lett. 2016 May 6;18(9):2228-31
pubmed: 27116426
J Am Chem Soc. 2019 May 1;141(17):7194-7201
pubmed: 30978019
J Am Chem Soc. 2021 May 5;143(17):6363-6369
pubmed: 33886287
J Am Chem Soc. 2015 Apr 8;137(13):4534-42
pubmed: 25789561
J Am Chem Soc. 2020 Jul 29;142(30):12930-12936
pubmed: 32659081
Chem Soc Rev. 2014 Apr 21;43(8):2714-42
pubmed: 24430887
Science. 2014 Jan 3;343(6166):61-5
pubmed: 24385626
J Org Chem. 2016 Jan 15;81(2):343-50
pubmed: 26769355
Science. 2018 Mar 2;359(6379):1016-1021
pubmed: 29496875
Angew Chem Int Ed Engl. 2019 Jan 21;58(4):1153-1157
pubmed: 30478868
Nat Chem Biol. 2010 Jun;6(6):405-7
pubmed: 20418878
J Am Chem Soc. 2020 Jun 10;142(23):10279-10283
pubmed: 32450692