Optimizing the setup of multienvironmental hybrid wheat yield trials for boosting the selection capability.
Journal
The plant genome
ISSN: 1940-3372
Titre abrégé: Plant Genome
Pays: United States
ID NLM: 101273919
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
13
05
2021
accepted:
22
07
2021
pubmed:
21
9
2021
medline:
29
3
2022
entrez:
20
9
2021
Statut:
ppublish
Résumé
The accuracy of genomic prediction increases with increasing heritability, and thus the challenge of optimizing the design of multienvironment yield trials under a limited budget arises. With this in mind, we aimed to find the best of several options to sparsely distribute a fixed number of plots across different environments to increase the accuracy of hybrid performance prediction. We used a comprehensive published genomic and phenotypic data set of 1,604 winter wheat (Triticum aestivum L.) hybrids and compared several commonly used biometric models for phenotypic data analysis in a resampling study to identify the one that most accurately estimated the hybrid performance in different imbalanced trials. Our results showed that when using information about genotypic relationships, genotypic values were more strongly associated with the reference values than when this information was ignored. In addition, a balanced environmental sampling resulted in an adequate characterization of each environment and increased the accuracy for estimating the hybrid performance. One promising design involved dividing the genotypes into equally sized subgroups that were tested in a subset of environments, with the constraint that the subgroups overlapped with respect to the environments. This scenario appears to be particularly appropriate, as it provided both high accuracies in the estimates of genotypic values and had low variability resulting from the data sample used. Thus, we were able to clearly demonstrate the utility for optimizing the design of multienvironment hybrid wheat yield trials in times of genomic selection.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e20150Informations de copyright
© 2021 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
Références
Alvarez-Castro, J. M., & Carlborg, O. (2006). A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics, 176(2), 1151-1167. https://doi.org/10.1534/genetics.106.067348
Bernardo, R. (2010). Breeding for quantitative traits (2nd ed.). Stemma Press.
de los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi, E., Weigel, K., & Cotes, J. M. (2009). Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics, 182(1), 375-385. https://doi.org/10.1534/genetics.109.101501
Cavanagh, C. R., Chao, S., Wang, S., Huang, B. E., Stephen, S., Kiani, S., Forrest, K., Saintenac, C., Brown-Guedira, G. L., Akhunova, A., See, D., Bai, G., Pumphrey, M., Tomar, L., Wong, D., Kong, S., Reynolds, M., Lopez da Silva, M., Bockelman, H., Talbert, L., … Akhunov, E. (2013). Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 8057-8062. https://doi.org/10.1073/pnas.1217133110
Cullis, B. R., Smith, A. B., & Coombes, N. E. (2006). On the design of early generation variety trials with correlated data. Journal of Agricultural, Biological, and Environmental Statistics, 11(4), 381-393. https://doi.org/10.1198/108571106x154443 https://doi.org/10.1198/108571106X154443
Endelman, J. B., Atlin, G. N., Beyene, Y., Semagn, K., Zhang, X., Sorrells, M. E., & Jannink, J.-L. (2014). Optimal design of preliminary yield trials with genome-wide markers. Crop Science, 54(1), 48-59. https://doi.org/10.2135/cropsci2013.03.0154
Falconer, D. S. (1989). Introduction to quantitative genetics. Longman.
Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics (Vol. 4, pp. 625-631). Clarendon Press.
Gianola, D. (2013). Priors in whole-genome regression: The Bayesian alphabet returns. Genetics, 194(3), 573-596. https://doi.org/10.1534/genetics.113.151753
Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J., & Thompson, R. (2015). ASReml user guide release 4.1 functional specification. VSN International Ltd. https://www.vsni.co.uk
Gilmour, A. R., Thompson, R., & Cullis, B. R. (1995). Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models. Biometrics, 51(4). 1440-1450 https://doi.org/10.2307/2533274
Habier, D., Fernando, R. L., & Dekkers, J. C. M. (2007). The impact of genetic relationship information on genome-assisted breeding values. Genetics, 177(4), 2389-2397. https://doi.org/10.1534/genetics.107.081190
He, S., Reif, J. C., Korzun, V., Bothe, R., Ebmeyer, E., & Jiang, Y. (2017). Genome-wide mapping and prediction suggests presence of local epistasis in a vast elite winter wheat populations adapted to Central Europe. Theoretical and Applied Genetics, 130(4), 635-647. https://doi.org/10.1007/s00122-016-2840-x
He, S., Schulthess, A. W., Mirdita, V., Zhao, Y., Korzun, V., Bothe, R., Ebmeyer, E., Reif, J. C., & Jiang, Y. (2016). Genomic selection in a commercial winter wheat population. Theoretical and Applied Genetics, 129(3), 641-651. https://doi.org/10.1007/s00122-015-2655-1
Huang, W., & Mackay, T. F. C. (2016). The genetic architecture of quantitative traits cannot be inferred from variance component analysis. PLOS Genetics, 12(11), e1006421. https://doi.org/10.1371/journal.pgen.1006421
Jarquin, D., Howard, R., Crossa, J., Beyene, Y., Gowda, M., Martini, J. W. R., Pazaran, G. C., Burgueño, J., Pacheco, A., Grondona, M., Wimmer, V., & Prasanna, B. M. (2020). Genomic prediction enhanced sparse testing for multi-environment trials. G3 Genes|Genomes|Genetics, 10(8), 2725-2739. https://doi.org/10.1534/g3.120.401349
Jiang, Y., Schmidt, R. H., Zhao, Y., & Reif, J. C. (2017). A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nature Genetics, 49(12), 1741-1746. https://doi.org/10.1038/ng.3974
Longin, C. F. H., Gowda, M., Mühleisen, J., Ebmeyer, E., Kazman, E., Schachschneider, R., Schacht, J., Kirchhoff, M., Zhao, Y., & Reif, J. C. (2013). Hybrid wheat: Quantitative genetic parameters and consequences for the design of breeding programs. Theoretical and Applied Genetics, 126(11), 2791-2801. https://doi.org/10.1007/s00122-013-2172-z
Longin, C. F. H., Mi, X., & Würschum, T. (2015). Genomic selection in wheat: Optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theoretical and Applied Genetics, 128(7), 1297-1306. https://doi.org/10.1007/s00122-015-2505-1
Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819. https://doi.org/10.1093/genetics/157.4.1819
Patterson, H. D., & Williams, E. R. (1976). A new class of resolvable incomplete block designs. Biometrika, 63(1), 83-92. https://doi.org/10.1093/biomet/63.1.83
Pérez, P., & de los Campos, G. (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics, 198(2), 483-495. https://doi.org/10.1534/genetics.114.164442
Piepho, H. P., Möhring, J., Melchinger, A. E., & Büchse, A. (2008). BLUP for phenotypic selection in plant breeding and variety testing. Euphytica, 161(1-2), 209-228. https://doi.org/10.1007/s10681-007-9449-8
Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Pérez, L. G., Crossa, J., Reynolds, M., & Singh, R. (2016). Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 Genes|Genomes|Genetics, 6(9), 2799-2808. https://doi.org/10.1534/g3.116.032888
Seye, A. I., Bauland, C., Charcosset, A., & Moreau, L. (2020). Revisiting hybrid breeding designs using genomic predictions: Simulations highlight the superiority of incomplete factorials between segregating families over topcross designs. Theoretical and Applied Genetics, 133(6), 1995-2010. https://doi.org/10.1007/s00122-020-03573-5
Smith, A. B., & Cullis, B. R. (2018). Plant breeding selection tools built on factor analytic mixed models for multi-environment trial data. Euphytica, 214(8), 143. https://doi.org/10.1007/s10681-018-2220-5
Storlie, E., & Charmet, G. (2013). Genomic selection accuracy using historical data generated in a wheat breeding program. The Plant Genome, 6(1). https://doi.org/10.3835/plantgenome2013.01.0001
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org
Utz, H. F., Melchinger, A. E., & Schön, C. C. (2000). Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics, 154(4), 1839-1849. https://doi.org/10.1093/genetics/154.4.1839
VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414-4423. https://doi.org/10.3168/jds.2007-0980
Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., Maccaferri, M., Salvi, S., Milner, S. G., Cattivelli, L., Mastrangelo, A. M., Whan, A., Stephen, S., Barker, G., Wieseke, R., Plieske, J., International Wheat Genome Sequencing Consortium, Lillemo, M., Mather, D., Appels, R., … Akhunov, E. (2014). Characterization of polyploid wheat genomic diversity using a high-density 90∼000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12(6), 787-796. https://doi.org/10.1111/pbi.12183
Ward, B. P., Brown-Guedira, G., Tyagi, P., Kolb, F. L., Sanford, D. A., Sneller, C. H., & Griffey, C. A. (2019). Multienvironment and multitrait genomic selection models in unbalanced early-generation wheat yield trials. Crop Science, 59(2), 491-507. https://doi.org/10.2135/cropsci2018.03.0189
Würschum, T., Langer, S. M., Longin, C. F. H., Korzun, V., Akhunov, E., Ebmeyer, E., Schachschneider, R., Schacht, J., Kazman, E., & Reif, J. C. (2013). Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 126(6), 1477-1486. https://doi.org/10.1007/s00122-013-2065-1
Yates, F. (1940). The recovery of inter-block information in balanced incomplete block designs. Annals of Eugenics, 10(1), 317-325. https://doi.org/10.1111/j.1469-1809.1940.tb02257.x
Zhao, Y., Gowda, M., Würschum, T., Friedrich, C., Longin, H., Korzun, V., Kollers, S., Schachschneider, R., Zeng, J., Fernando, R., Dubcovsky, J., & Reif, J. C. (2013). Dissecting the genetic architecture of frost tolerance in central European winter wheat. Journal of Experimental Botany, 64(14), 4453-4460. https://doi.org/10.1093/jxb/ert259
Zhao, Y., Li, Z., Liu, G., Jiang, Y., Maurer, H. P., Würschum, T., Mock, H.-P., Matros, A., Ebmeyer, E., Schachschneider, R., Kazman, E., Schacht, J., Gowda, M., Longin, C. F. H., & Reif, J. C. (2015). Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15624-15629. https://doi.org/10.1073/pnas.1514547112
Zhao, Y., Zeng, J., Fernando, R., & Reif, J. C. (2013). Genomic prediction of hybrid wheat performance. Crop Science, 53(3), 802-810. https://doi.org/10.2135/cropsci2012.08.0463