Single-cell transcriptome analysis reveals cellular heterogeneity in the ascending aortas of normal and high-fat diet-fed mice.


Journal

Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880

Informations de publication

Date de publication:
09 2021
Historique:
received: 09 03 2021
accepted: 21 07 2021
revised: 13 07 2021
pubmed: 23 9 2021
medline: 30 3 2022
entrez: 22 9 2021
Statut: ppublish

Résumé

The aorta contains numerous cell types that contribute to vascular inflammation and thus the progression of aortic diseases. However, the heterogeneity and cellular composition of the ascending aorta in the setting of a high-fat diet (HFD) have not been fully assessed. We performed single-cell RNA sequencing on ascending aortas from mice fed a normal diet and mice fed a HFD. Unsupervised cluster analysis of the transcriptional profiles from 24,001 aortic cells identified 27 clusters representing 10 cell types: endothelial cells (ECs), fibroblasts, vascular smooth muscle cells (SMCs), immune cells (B cells, T cells, macrophages, and dendritic cells), mesothelial cells, pericytes, and neural cells. After HFD intake, subpopulations of endothelial cells with lipid transport and angiogenesis capacity and extensive expression of contractile genes were defined. In the HFD group, three major SMC subpopulations showed increased expression of extracellular matrix-degradation genes, and a synthetic SMC subcluster was proportionally increased. This increase was accompanied by upregulation of proinflammatory genes. Under HFD conditions, aortic-resident macrophage numbers were increased, and blood-derived macrophages showed the strongest expression of proinflammatory cytokines. Our study elucidates the nature and range of the cellular composition of the ascending aorta and increases understanding of the development and progression of aortic inflammatory disease.

Identifiants

pubmed: 34548614
doi: 10.1038/s12276-021-00671-2
pii: 10.1038/s12276-021-00671-2
pmc: PMC8492660
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1379-1389

Informations de copyright

© 2021. The Author(s).

Références

Grandl, G. & Wolfrum, C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin. Immunopathol. 40, 215–224 (2018).
pubmed: 29209827 doi: 10.1007/s00281-017-0666-5
Spiegelman, B. M. & Flier, J. S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).
pubmed: 11239410 doi: 10.1016/S0092-8674(01)00240-9
Schäfer, N. et al. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur. Heart J. 34, 3515–3524 (2013).
pubmed: 23594590 pmcid: 3844149 doi: 10.1093/eurheartj/eht095
Rabkin, S. W. The role matrix metalloproteinases in the production of aortic aneurysm. Prog. Mol. Biol. Transl. Sci. 147, 239–265 (2017).
pubmed: 28413030 doi: 10.1016/bs.pmbts.2017.02.002
Zhao, G. et al. Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction. Circ. Res. 121, 1331–1345 (2017).
pubmed: 29089350 doi: 10.1161/CIRCRESAHA.117.311450
Raffort, J. et al. Monocytes and macrophages in abdominal aortic aneurysm. Nat. Rev. Cardiol. 14, 457–471 (2017).
pubmed: 28406184 doi: 10.1038/nrcardio.2017.52
Kalluri, A. S. et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation 140, 147–163 (2019).
pubmed: 31146585 pmcid: 6693656 doi: 10.1161/CIRCULATIONAHA.118.038362
Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).
pubmed: 29545365 doi: 10.1161/CIRCRESAHA.117.312509
Pedroza, A. J. et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 40, 2195–2211 (2020).
pubmed: 32698686 pmcid: 7484233 doi: 10.1161/ATVBAHA.120.314670
Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).
pubmed: 32981416 pmcid: 7641189 doi: 10.1161/CIRCRESAHA.120.316770
Gu, W. et al. Adventitial cell atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-deficient mice defined by single-cell RNA sequencing. Arterioscler. Thromb. Vasc. Biol. 39, 1055–1071 (2019).
pubmed: 30943771 pmcid: 6553510 doi: 10.1161/ATVBAHA.119.312399
Fleury Curado, T. et al. Sleep-disordered breathing in C57BL/6J mice with diet-induced obesity. Sleep 41, zsy089 (2018).
pmcid: 6093346 doi: 10.1093/sleep/zsy089
Berger, S. et al. Intranasal leptin relieves sleep-disordered breathing in mice with diet-induced obesity. Am. J. Respir. Crit. Care Med. 199, 773–783 (2019).
pubmed: 30309268 pmcid: 6423095 doi: 10.1164/rccm.201805-0879OC
Zhao, G. et al. Single cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta. Cardiovasc. Res. 117, 1402–1416 (2020).
pmcid: 8064434 doi: 10.1093/cvr/cvaa214
He, D. et al. Aortic heterogeneity across segments and under high fat/salt/glucose conditions at the single-cell level. Natl Sci. Rev. 7, 881–896 (2020).
doi: 10.1093/nsr/nwaa038 pubmed: 34692110 pmcid: 8289085
Li, Y. et al. Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue. Circulation 142, 1374–1388 (2020).
pubmed: 33017217 doi: 10.1161/CIRCULATIONAHA.120.046528 pmcid: 7539140
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522 pmcid: 7889871 doi: 10.1038/s41467-021-21246-9
Ganta, V. C., Choi, M., Farber, C. R. & Annex, B. H. Antiangiogenic VEGF(165)b regulates macrophage polarization via S100A8/S100A9 in peripheral artery disease. Circulation 139, 226–242 (2019).
pubmed: 30586702 pmcid: 6322929 doi: 10.1161/CIRCULATIONAHA.118.034165
Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).
pubmed: 22770218 pmcid: 3528019 doi: 10.1016/j.cell.2012.04.042
Gealekman, O. et al. Control of adipose tissue expandability in response to high fat diet by the insulin-like growth factor-binding protein-4. J. Biol. Chem. 289, 18327–18338 (2014).
pubmed: 24778188 pmcid: 4140255 doi: 10.1074/jbc.M113.545798
Singhmar, P. et al. The fibroblast-derived protein PI16 controls neuropathic pain. Proc. Natl Acad. Sci. USA 117, 5463–5471 (2020).
pubmed: 32079726 pmcid: 7071920 doi: 10.1073/pnas.1913444117
Chen, H. et al. LncRNA Gm12840 mediates WISP1 to regulate ischemia-reperfusion-induced renal fibrosis by sponging miR-677-5p. Epigenomics 12, 2205–2218 (2020).
pubmed: 33351669
Wang, Z. et al. IGFBP6 regulates vascular smooth muscle cell proliferation and morphology via cyclin E-CDK2. J. Cell. Physiol. 235, 9538–9556 (2020).
pubmed: 32529639 doi: 10.1002/jcp.29762
Shi, G. et al. Platelet factor 4 mediates vascular smooth muscle cell injury responses. Blood 121, 4417–4427 (2013).
pubmed: 23568488 pmcid: 3663434 doi: 10.1182/blood-2012-09-454710
Zernecke, A. et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020).
pubmed: 32673538 pmcid: 7371244 doi: 10.1161/CIRCRESAHA.120.316903
Rousselle, A. et al. CXCL5 limits macrophage foam cell formation in atherosclerosis. J. Clin. Invest. 123, 1343–1347 (2013).
pubmed: 23376791 pmcid: 3582141 doi: 10.1172/JCI66580
Veillard, N. R. et al. Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosis in vivo. Circulation 112, 870–878 (2005).
pubmed: 16061736 doi: 10.1161/CIRCULATIONAHA.104.520718
Ishibashi, M. et al. Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ. Res. 94, 1203–1210 (2004).
pubmed: 15059935 doi: 10.1161/01.RES.0000126924.23467.A3
Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).
pubmed: 9732872 doi: 10.1038/29788
Wenzel, P. et al. Heme oxygenase-1 suppresses a pro-inflammatory phenotype in monocytes and determines endothelial function and arterial hypertension in mice and humans. Eur. Heart J. 36, 3437–3446 (2015).
pubmed: 26516175 doi: 10.1093/eurheartj/ehv544
Roberts, M. E. et al. Deep phenotyping by mass cytometry and single-cell RNA-sequencing reveals LYN-regulated signaling profiles underlying monocyte subset heterogeneity and lifespan. Circ. Res. 126, e61–e79 (2020).
pubmed: 32151196
Muhl, L. & Genové, G. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).
pubmed: 32769974 pmcid: 7414220 doi: 10.1038/s41467-020-17740-1
Augustin, H. G. & Koh, G. Y. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017).
pubmed: 28775214 doi: 10.1126/science.aal2379
Potente, M. & Mäkinen, T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18, 477–494 (2017).
pubmed: 28537573 doi: 10.1038/nrm.2017.36
Yuan, L. et al. A role of stochastic phenotype switching in generating mosaic endothelial cell heterogeneity. Nat. Commun. 7, 10160 (2016).
pubmed: 26744078 pmcid: 5154372 doi: 10.1038/ncomms10160
Pusztaszeri, M. P., Seelentag, W. & Bosman, F. T. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem. 54, 385–395 (2006).
pubmed: 16234507 doi: 10.1369/jhc.4A6514.2005
Shanahan, C. M. & Weissberg, P. L. Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 18, 333–338 (1998).
pubmed: 9514400 doi: 10.1161/01.ATV.18.3.333
Alencar, G. F. et al. Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation 142, 2045–2059 (2020).
pubmed: 32674599 pmcid: 7682794 doi: 10.1161/CIRCULATIONAHA.120.046672
Wirka, R. C., Wagh, D. & Paik, D. T. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).
pubmed: 31359001 pmcid: 7274198 doi: 10.1038/s41591-019-0512-5
Canesi, F. et al. A thioredoxin-mimetic peptide exerts potent anti-inflammatory, antioxidant, and atheroprotective effects in ApoE2.Ki mice fed high fat diet. Cardiovasc. Res. 115, 292–301 (2019).
pubmed: 30010817 doi: 10.1093/cvr/cvy183
Kelley, E. E. et al. Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity. Cardiovasc. Res. 101, 352–363 (2014).
pubmed: 24385344 pmcid: 3928004 doi: 10.1093/cvr/cvt341
Vendrov, A. E., Madamanchi, N. R., Hakim, Z. S., Rojas, M. & Runge, M. S. Thrombin and NAD(P)H oxidase-mediated regulation of CD44 and BMP4-Id pathway in VSMC, restenosis, and atherosclerosis. Circ. Res. 98, 1254–1263 (2006).
pubmed: 16601225 doi: 10.1161/01.RES.0000221214.37803.79
Li, Q. et al. Regulation of macrophage apoptosis and atherosclerosis by lipid-induced PKCδ isoform activation. Circ. Res. 121, 1153–1167 (2017).
pubmed: 28855204 pmcid: 6176491 doi: 10.1161/CIRCRESAHA.117.311606
Wei, Y. et al. Dicer in macrophages prevents atherosclerosis by promoting mitochondrial oxidative metabolism. Circulation 138, 2007–2020 (2018).
pubmed: 29748186 doi: 10.1161/CIRCULATIONAHA.117.031589
Puca, A. A. et al. Single systemic transfer of a human gene associated with exceptional longevity halts the progression of atherosclerosis and inflammation in ApoE knockout mice through a CXCR4-mediated mechanism. Eur. Heart J. 41, 2487–2497 (2020).
pubmed: 31289820 doi: 10.1093/eurheartj/ehz459
Rizas, K. D., Ippagunta, N. & Tilson, M. D. 3rd Immune cells and molecular mediators in the pathogenesis of the abdominal aortic aneurysm. Cardiol. Rev. 17, 201–210 (2009).
pubmed: 19690470 doi: 10.1097/CRD.0b013e3181b04698
Shimizu, K., Mitchell, R. N. & Libby, P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 26, 987–994 (2006).
pubmed: 16497993 doi: 10.1161/01.ATV.0000214999.12921.4f
Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).
pubmed: 29545366 pmcid: 5993603 doi: 10.1161/CIRCRESAHA.117.312513

Auteurs

Hao Kan (H)

Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.

Ka Zhang (K)

Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.

Aiqin Mao (A)

Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.

Li Geng (L)

Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.

Mengru Gao (M)

Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.

Lei Feng (L)

Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.

Qingjun You (Q)

Department of Thoracic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.

Xin Ma (X)

Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China. maxin@jiangnan.edu.cn.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH