Single-cell transcriptome analysis reveals cellular heterogeneity in the ascending aortas of normal and high-fat diet-fed mice.
Journal
Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
09
03
2021
accepted:
21
07
2021
revised:
13
07
2021
pubmed:
23
9
2021
medline:
30
3
2022
entrez:
22
9
2021
Statut:
ppublish
Résumé
The aorta contains numerous cell types that contribute to vascular inflammation and thus the progression of aortic diseases. However, the heterogeneity and cellular composition of the ascending aorta in the setting of a high-fat diet (HFD) have not been fully assessed. We performed single-cell RNA sequencing on ascending aortas from mice fed a normal diet and mice fed a HFD. Unsupervised cluster analysis of the transcriptional profiles from 24,001 aortic cells identified 27 clusters representing 10 cell types: endothelial cells (ECs), fibroblasts, vascular smooth muscle cells (SMCs), immune cells (B cells, T cells, macrophages, and dendritic cells), mesothelial cells, pericytes, and neural cells. After HFD intake, subpopulations of endothelial cells with lipid transport and angiogenesis capacity and extensive expression of contractile genes were defined. In the HFD group, three major SMC subpopulations showed increased expression of extracellular matrix-degradation genes, and a synthetic SMC subcluster was proportionally increased. This increase was accompanied by upregulation of proinflammatory genes. Under HFD conditions, aortic-resident macrophage numbers were increased, and blood-derived macrophages showed the strongest expression of proinflammatory cytokines. Our study elucidates the nature and range of the cellular composition of the ascending aorta and increases understanding of the development and progression of aortic inflammatory disease.
Identifiants
pubmed: 34548614
doi: 10.1038/s12276-021-00671-2
pii: 10.1038/s12276-021-00671-2
pmc: PMC8492660
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1379-1389Informations de copyright
© 2021. The Author(s).
Références
Grandl, G. & Wolfrum, C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin. Immunopathol. 40, 215–224 (2018).
pubmed: 29209827
doi: 10.1007/s00281-017-0666-5
Spiegelman, B. M. & Flier, J. S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).
pubmed: 11239410
doi: 10.1016/S0092-8674(01)00240-9
Schäfer, N. et al. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur. Heart J. 34, 3515–3524 (2013).
pubmed: 23594590
pmcid: 3844149
doi: 10.1093/eurheartj/eht095
Rabkin, S. W. The role matrix metalloproteinases in the production of aortic aneurysm. Prog. Mol. Biol. Transl. Sci. 147, 239–265 (2017).
pubmed: 28413030
doi: 10.1016/bs.pmbts.2017.02.002
Zhao, G. et al. Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction. Circ. Res. 121, 1331–1345 (2017).
pubmed: 29089350
doi: 10.1161/CIRCRESAHA.117.311450
Raffort, J. et al. Monocytes and macrophages in abdominal aortic aneurysm. Nat. Rev. Cardiol. 14, 457–471 (2017).
pubmed: 28406184
doi: 10.1038/nrcardio.2017.52
Kalluri, A. S. et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation 140, 147–163 (2019).
pubmed: 31146585
pmcid: 6693656
doi: 10.1161/CIRCULATIONAHA.118.038362
Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).
pubmed: 29545365
doi: 10.1161/CIRCRESAHA.117.312509
Pedroza, A. J. et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 40, 2195–2211 (2020).
pubmed: 32698686
pmcid: 7484233
doi: 10.1161/ATVBAHA.120.314670
Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).
pubmed: 32981416
pmcid: 7641189
doi: 10.1161/CIRCRESAHA.120.316770
Gu, W. et al. Adventitial cell atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-deficient mice defined by single-cell RNA sequencing. Arterioscler. Thromb. Vasc. Biol. 39, 1055–1071 (2019).
pubmed: 30943771
pmcid: 6553510
doi: 10.1161/ATVBAHA.119.312399
Fleury Curado, T. et al. Sleep-disordered breathing in C57BL/6J mice with diet-induced obesity. Sleep 41, zsy089 (2018).
pmcid: 6093346
doi: 10.1093/sleep/zsy089
Berger, S. et al. Intranasal leptin relieves sleep-disordered breathing in mice with diet-induced obesity. Am. J. Respir. Crit. Care Med. 199, 773–783 (2019).
pubmed: 30309268
pmcid: 6423095
doi: 10.1164/rccm.201805-0879OC
Zhao, G. et al. Single cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta. Cardiovasc. Res. 117, 1402–1416 (2020).
pmcid: 8064434
doi: 10.1093/cvr/cvaa214
He, D. et al. Aortic heterogeneity across segments and under high fat/salt/glucose conditions at the single-cell level. Natl Sci. Rev. 7, 881–896 (2020).
doi: 10.1093/nsr/nwaa038
pubmed: 34692110
pmcid: 8289085
Li, Y. et al. Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue. Circulation 142, 1374–1388 (2020).
pubmed: 33017217
doi: 10.1161/CIRCULATIONAHA.120.046528
pmcid: 7539140
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522
pmcid: 7889871
doi: 10.1038/s41467-021-21246-9
Ganta, V. C., Choi, M., Farber, C. R. & Annex, B. H. Antiangiogenic VEGF(165)b regulates macrophage polarization via S100A8/S100A9 in peripheral artery disease. Circulation 139, 226–242 (2019).
pubmed: 30586702
pmcid: 6322929
doi: 10.1161/CIRCULATIONAHA.118.034165
Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).
pubmed: 22770218
pmcid: 3528019
doi: 10.1016/j.cell.2012.04.042
Gealekman, O. et al. Control of adipose tissue expandability in response to high fat diet by the insulin-like growth factor-binding protein-4. J. Biol. Chem. 289, 18327–18338 (2014).
pubmed: 24778188
pmcid: 4140255
doi: 10.1074/jbc.M113.545798
Singhmar, P. et al. The fibroblast-derived protein PI16 controls neuropathic pain. Proc. Natl Acad. Sci. USA 117, 5463–5471 (2020).
pubmed: 32079726
pmcid: 7071920
doi: 10.1073/pnas.1913444117
Chen, H. et al. LncRNA Gm12840 mediates WISP1 to regulate ischemia-reperfusion-induced renal fibrosis by sponging miR-677-5p. Epigenomics 12, 2205–2218 (2020).
pubmed: 33351669
Wang, Z. et al. IGFBP6 regulates vascular smooth muscle cell proliferation and morphology via cyclin E-CDK2. J. Cell. Physiol. 235, 9538–9556 (2020).
pubmed: 32529639
doi: 10.1002/jcp.29762
Shi, G. et al. Platelet factor 4 mediates vascular smooth muscle cell injury responses. Blood 121, 4417–4427 (2013).
pubmed: 23568488
pmcid: 3663434
doi: 10.1182/blood-2012-09-454710
Zernecke, A. et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020).
pubmed: 32673538
pmcid: 7371244
doi: 10.1161/CIRCRESAHA.120.316903
Rousselle, A. et al. CXCL5 limits macrophage foam cell formation in atherosclerosis. J. Clin. Invest. 123, 1343–1347 (2013).
pubmed: 23376791
pmcid: 3582141
doi: 10.1172/JCI66580
Veillard, N. R. et al. Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosis in vivo. Circulation 112, 870–878 (2005).
pubmed: 16061736
doi: 10.1161/CIRCULATIONAHA.104.520718
Ishibashi, M. et al. Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ. Res. 94, 1203–1210 (2004).
pubmed: 15059935
doi: 10.1161/01.RES.0000126924.23467.A3
Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).
pubmed: 9732872
doi: 10.1038/29788
Wenzel, P. et al. Heme oxygenase-1 suppresses a pro-inflammatory phenotype in monocytes and determines endothelial function and arterial hypertension in mice and humans. Eur. Heart J. 36, 3437–3446 (2015).
pubmed: 26516175
doi: 10.1093/eurheartj/ehv544
Roberts, M. E. et al. Deep phenotyping by mass cytometry and single-cell RNA-sequencing reveals LYN-regulated signaling profiles underlying monocyte subset heterogeneity and lifespan. Circ. Res. 126, e61–e79 (2020).
pubmed: 32151196
Muhl, L. & Genové, G. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).
pubmed: 32769974
pmcid: 7414220
doi: 10.1038/s41467-020-17740-1
Augustin, H. G. & Koh, G. Y. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017).
pubmed: 28775214
doi: 10.1126/science.aal2379
Potente, M. & Mäkinen, T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18, 477–494 (2017).
pubmed: 28537573
doi: 10.1038/nrm.2017.36
Yuan, L. et al. A role of stochastic phenotype switching in generating mosaic endothelial cell heterogeneity. Nat. Commun. 7, 10160 (2016).
pubmed: 26744078
pmcid: 5154372
doi: 10.1038/ncomms10160
Pusztaszeri, M. P., Seelentag, W. & Bosman, F. T. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem. 54, 385–395 (2006).
pubmed: 16234507
doi: 10.1369/jhc.4A6514.2005
Shanahan, C. M. & Weissberg, P. L. Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 18, 333–338 (1998).
pubmed: 9514400
doi: 10.1161/01.ATV.18.3.333
Alencar, G. F. et al. Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation 142, 2045–2059 (2020).
pubmed: 32674599
pmcid: 7682794
doi: 10.1161/CIRCULATIONAHA.120.046672
Wirka, R. C., Wagh, D. & Paik, D. T. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).
pubmed: 31359001
pmcid: 7274198
doi: 10.1038/s41591-019-0512-5
Canesi, F. et al. A thioredoxin-mimetic peptide exerts potent anti-inflammatory, antioxidant, and atheroprotective effects in ApoE2.Ki mice fed high fat diet. Cardiovasc. Res. 115, 292–301 (2019).
pubmed: 30010817
doi: 10.1093/cvr/cvy183
Kelley, E. E. et al. Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity. Cardiovasc. Res. 101, 352–363 (2014).
pubmed: 24385344
pmcid: 3928004
doi: 10.1093/cvr/cvt341
Vendrov, A. E., Madamanchi, N. R., Hakim, Z. S., Rojas, M. & Runge, M. S. Thrombin and NAD(P)H oxidase-mediated regulation of CD44 and BMP4-Id pathway in VSMC, restenosis, and atherosclerosis. Circ. Res. 98, 1254–1263 (2006).
pubmed: 16601225
doi: 10.1161/01.RES.0000221214.37803.79
Li, Q. et al. Regulation of macrophage apoptosis and atherosclerosis by lipid-induced PKCδ isoform activation. Circ. Res. 121, 1153–1167 (2017).
pubmed: 28855204
pmcid: 6176491
doi: 10.1161/CIRCRESAHA.117.311606
Wei, Y. et al. Dicer in macrophages prevents atherosclerosis by promoting mitochondrial oxidative metabolism. Circulation 138, 2007–2020 (2018).
pubmed: 29748186
doi: 10.1161/CIRCULATIONAHA.117.031589
Puca, A. A. et al. Single systemic transfer of a human gene associated with exceptional longevity halts the progression of atherosclerosis and inflammation in ApoE knockout mice through a CXCR4-mediated mechanism. Eur. Heart J. 41, 2487–2497 (2020).
pubmed: 31289820
doi: 10.1093/eurheartj/ehz459
Rizas, K. D., Ippagunta, N. & Tilson, M. D. 3rd Immune cells and molecular mediators in the pathogenesis of the abdominal aortic aneurysm. Cardiol. Rev. 17, 201–210 (2009).
pubmed: 19690470
doi: 10.1097/CRD.0b013e3181b04698
Shimizu, K., Mitchell, R. N. & Libby, P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 26, 987–994 (2006).
pubmed: 16497993
doi: 10.1161/01.ATV.0000214999.12921.4f
Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).
pubmed: 29545366
pmcid: 5993603
doi: 10.1161/CIRCRESAHA.117.312513