Structural basis of gating modulation of Kv4 channel complexes.
Animals
Cryoelectron Microscopy
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases
/ chemistry
Female
Humans
Ion Channel Gating
Kv Channel-Interacting Proteins
/ chemistry
Models, Molecular
Multiprotein Complexes
/ chemistry
Mutation
Nerve Tissue Proteins
/ chemistry
Oocytes
/ metabolism
Potassium Channels
/ chemistry
Protein Binding
Shal Potassium Channels
/ chemistry
Xenopus laevis
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
02
03
2021
accepted:
19
08
2021
pubmed:
24
9
2021
medline:
11
1
2022
entrez:
23
9
2021
Statut:
ppublish
Résumé
Modulation of voltage-gated potassium (Kv) channels by auxiliary subunits is central to the physiological function of channels in the brain and heart
Identifiants
pubmed: 34552243
doi: 10.1038/s41586-021-03935-z
pii: 10.1038/s41586-021-03935-z
pmc: PMC8566240
doi:
Substances chimiques
KCNIP1 protein, human
0
Kv Channel-Interacting Proteins
0
Multiprotein Complexes
0
Nerve Tissue Proteins
0
Potassium Channels
0
Shal Potassium Channels
0
DPP6 protein, human
EC 3.4.-
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases
EC 3.4.14.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
158-164Informations de copyright
© 2021. The Author(s).
Références
Li, Y., Um, S. Y. & McDonald, T. V. Voltage-gated potassium channels: regulation by accessory subunits. Neuroscientist 12, 199–210 (2006).
pubmed: 16684966
doi: 10.1177/1073858406287717
Coetzee, W. A. et al. Molecular diversity of K
pubmed: 10414301
doi: 10.1111/j.1749-6632.1999.tb11293.x
Zemel, B. M., Ritter, D. M., Covarrubias, M. & Muqeem, T. A-type Kv channels in dorsal root ganglion neurons: diversity, function, and dysfunction. Front. Mol. Neurosci. 11, 253 (2018).
pubmed: 30127716
pmcid: 6088260
doi: 10.3389/fnmol.2018.00253
Covarrubias, M. et al. The neuronal Kv4 channel complex. Neurochem. Res. 33, 1558–1567 (2008).
pubmed: 18357523
pmcid: 5833991
doi: 10.1007/s11064-008-9650-8
Amarillo, Y. et al. Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K
pubmed: 18276729
pmcid: 2465190
doi: 10.1113/jphysiol.2007.150540
O’Malley, H. A. & Isom, L. L. Sodium channel β subunits: emerging targets in channelopathies. Annu. Rev. Physiol. 77, 481–504 (2015).
pubmed: 25668026
pmcid: 4817109
doi: 10.1146/annurev-physiol-021014-071846
Catterall, W. A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3, a003947 (2011).
pubmed: 21746798
pmcid: 3140680
doi: 10.1101/cshperspect.a003947
Catterall, W. A., Wisedchaisri, G. & Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 13, 455–463 (2017).
pubmed: 28406893
pmcid: 5464002
doi: 10.1038/nchembio.2353
McCoy, J. G. & Nimigean, C. M. Structural correlates of selectivity and inactivation in potassium channels. Biochim. Biophys. Acta 1818, 272–285 (2012).
pubmed: 21958666
doi: 10.1016/j.bbamem.2011.09.007
Dixon, J. E. et al. Role of the Kv4.3 K
pubmed: 8831489
doi: 10.1161/01.RES.79.4.659
Jerng, H. H., Pfaffinger, P. J. & Covarrubias, M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol. Cell. Neurosci. 27, 343–369 (2004).
pubmed: 15555915
doi: 10.1016/j.mcn.2004.06.011
Bähring, R. & Covarrubias, M. Mechanisms of closed-state inactivation in voltage-gated ion channels. J. Physiol. 589, 461–479 (2011).
pubmed: 21098008
doi: 10.1113/jphysiol.2010.191965
Blunck, R. & Batulan, Z. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front. Pharmacol. 3, 166 (2012).
pubmed: 22988442
pmcid: 3439648
doi: 10.3389/fphar.2012.00166
Bähring, R., Barghaan, J., Westermeier, R. & Wollberg, J. Voltage sensor inactivation in potassium channels. Front. Pharmacol. 3, 100 (2012).
pubmed: 22654758
pmcid: 3358694
doi: 10.3389/fphar.2012.00100
Fineberg, J. D., Szanto, T. G., Panyi, G. & Covarrubias, M. Closed-state inactivation involving an internal gate in Kv4.1 channels modulates pore blockade by intracellular quaternary ammonium ions. Sci. Rep. 6, 31131 (2016).
pubmed: 27502553
pmcid: 4977472
doi: 10.1038/srep31131
Fineberg, J. D., Ritter, D. M. & Covarrubias, M. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels. J. Gen. Physiol. 140, 513–527 (2012).
pubmed: 23109714
pmcid: 3483116
doi: 10.1085/jgp.201210869
Dougherty, K., Santiago-Castillo, J. A. & Covarrubias, M. Gating charge immobilization in Kv4.2 channels: the basis of closed-state inactivation. J. Gen. Physiol. 131, 257–273 (2008).
pubmed: 18299396
pmcid: 2248721
doi: 10.1085/jgp.200709938
Kaulin, Y. A., Santiago-Castillo, J. A., Rocha, C. A. & Covarrubias, M. Mechanism of the modulation of Kv4:KChIP-1 channels by external K
pubmed: 17951301
doi: 10.1529/biophysj.107.117796
Vardanyan, V. & Pongs, O. Coupling of voltage-sensors to the channel pore: a comparative view. Front. Pharmacol. 3,145 (2012).
pubmed: 22866036
pmcid: 3406610
doi: 10.3389/fphar.2012.00145
Gebauer, M. et al. N-type inactivation features of Kv4.2 channel gating. Biophys. J. 86, 210–223 (2004).
pubmed: 14695263
pmcid: 1303783
doi: 10.1016/S0006-3495(04)74097-7
Barghaan, J. & Bähring, R. Dynamic coupling of voltage sensor and gate involved in closed-state inactivation of kv4.2 channels. J. Gen. Physiol. 133, 205–224 (2009).
pubmed: 19171772
pmcid: 2638201
doi: 10.1085/jgp.200810073
Wollberg, J. & Bähring, R. Intra- and intersubunit dynamic binding in Kv4.2 channel closed-state inactivation. Biophys. J. 110, 157–175 (2016).
pubmed: 26745419
pmcid: 4805869
doi: 10.1016/j.bpj.2015.10.046
Kaulin, Y. A. et al. The dipeptidyl-peptidase-like protein DPP6 determines the unitary conductance of neuronal Kv4.2 channels. J. Neurosci. 29, 3242–3251 (2009).
pubmed: 19279261
pmcid: 3758885
doi: 10.1523/JNEUROSCI.4767-08.2009
An, W. F. et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556 (2000).
pubmed: 10676964
doi: 10.1038/35000592
Kitazawa, M., Kubo, Y. & Nakajo, K. The stoichiometry and biophysical properties of the Kv4 potassium channel complex with K
doi: 10.1074/jbc.M114.563452
Pioletti, M., Findeisen, F., Hura, G. L. & Minor, D. L. Jr. Three-dimensional structure of the KChIP1–Kv4.3 T1 complex reveals a cross-shaped octamer. Nat. Struct. Mol. Biol. 13, 987–995 (2006).
pubmed: 17057713
pmcid: 3018330
doi: 10.1038/nsmb1164
Wang, H. et al. Structural basis for modulation of Kv4 K
pubmed: 17187064
doi: 10.1038/nn1822
Dougherty, K. & Covarrubias, M. A dipeptidyl aminopeptidase-like protein remodels gating charge dynamics in Kv4.2 channels. J. Gen. Physiol. 128, 745–753 (2006).
pubmed: 17130523
pmcid: 2151596
doi: 10.1085/jgp.200609668
Kim, L. A. et al. Three-dimensional structure of I
pubmed: 14980201
doi: 10.1016/S0896-6273(04)00050-9
Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K
pubmed: 16002581
doi: 10.1126/science.1116269
Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K
pubmed: 18004376
doi: 10.1038/nature06265
Tao, X., Lee, A., Limapichat, W., Dougherty, D. A. & MacKinnon, R. A gating charge transfer center in voltage sensors. Science 328, 67–73 (2010).
pubmed: 20360102
pmcid: 2869078
doi: 10.1126/science.1185954
Callsen, B., et al. Contribution of N- and C-terminal Kv4.2 channel domains to KChIP interaction. J. Physiol. 568, 397–412 (2005).
pubmed: 16096338
pmcid: 1474738
doi: 10.1113/jphysiol.2005.094359
Rivera, J. F., Ahmad, S., Quick, M. W., Liman, E. R. & Arnold, D. B. An evolutionarily conserved dileucine motif in Shal K
pubmed: 12592409
doi: 10.1038/nn1020
Beck, E. J., Bowlby, M., An, W. F., Rhodes, K. J. & Covarrubias, M. Remodelling inactivation gating of Kv4 channels by KChIP1, a small-molecular-weight calcium-binding protein. J. Physiol. 538, 691–706 (2002).
pubmed: 11826158
pmcid: 2290090
doi: 10.1113/jphysiol.2001.013127
Wettwer, E., Amos, G. J., Posival, H. & Ravens, U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ. Res. 75, 473–482 (1994).
pubmed: 8062421
doi: 10.1161/01.RES.75.3.473
Radicke, S. et al. Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts. Cardiovasc. Res. 71, 695–703 (2006).
pubmed: 16876774
doi: 10.1016/j.cardiores.2006.06.017
Nadal, M. S. et al. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K
pubmed: 12575952
doi: 10.1016/S0896-6273(02)01185-6
Jerng, H. H., Qian, Y. & Pfaffinger, P. J. Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys. J. 87, 2380–2396 (2004).
pubmed: 15454437
pmcid: 1304660
doi: 10.1529/biophysj.104.042358
Ren, X., Hayashi, Y., Yoshimura, N. & Takimoto, K. Transmembrane interaction mediates complex formation between peptidase homologues and Kv4 channels. Mol. Cell. Neurosci. 29, 320–332 (2005).
pubmed: 15911355
doi: 10.1016/j.mcn.2005.02.003
Dougherty, K., Tu, L., Deutsch, C. & Covarrubias, M. The dipeptidyl-aminopeptidase-like protein 6 is an integral voltage sensor-interacting β-subunit of neuronal K
pubmed: 19372736
doi: 10.4161/chan.3.2.8333
Kitazawa, M., Kubo, Y. & Nakajo, K. Kv4.2 and accessory dipeptidyl peptidase-like protein 10 (DPP10) subunit preferentially form a 4:2 (Kv4.2:DPP10) channel complex. J. Biol. Chem. 290, 22724–22733 (2015).
pubmed: 26209633
pmcid: 4566244
doi: 10.1074/jbc.M115.646794
Strop, P., Bankovich, A. J., Hansen, K. C., Garcia, K. C. & Brunger, A. T. Structure of a human A-type potassium channel interacting protein DPPX, a member of the dipeptidyl aminopeptidase family. J. Mol. Biol. 343, 1055–1065 (2004).
pubmed: 15476821
doi: 10.1016/j.jmb.2004.09.003
Sun, J. & MacKinnon, R. Structural basis of human KCNQ1 modulation and gating. Cell 180, 340–347 (2020).
pubmed: 31883792
doi: 10.1016/j.cell.2019.12.003
Tao, X. & MacKinnon, R. Molecular structures of the human Slo1 K
pubmed: 31815672
pmcid: 6934384
doi: 10.7554/eLife.51409
Pan, X. et al. Structure of the human voltage-gated sodium channel Nav1.4 in complex with β1. Science 362, eaau2486 (2018).
pubmed: 30190309
doi: 10.1126/science.aau2486
Shen, H., Liu, D., Wu, K., Lei, J. & Yan, N. Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. Science 363, 1303–1308 (2019).
pubmed: 30765606
doi: 10.1126/science.aaw2493
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
doi: 10.1016/j.jsb.2005.07.007
pubmed: 16182563
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D. & Urzhumtsev, A. Bulk-solvent and overall scaling revisited: faster calculations, improved results. Acta Crystallogr. D 69, 625–634 (2013).
pubmed: 23519671
pmcid: 3606040
doi: 10.1107/S0907444913000462
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph., 14, 354–360 (1996).
pubmed: 9195488
doi: 10.1016/S0263-7855(97)00009-X
Liman, E., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K
pubmed: 1419000
doi: 10.1016/0896-6273(92)90239-A
Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 48, 452–458 (2013).
pubmed: 23208313
doi: 10.1038/bmt.2012.244
Wang, G. et al. Functionally active t1–t1 interfaces revealed by the accessibility of intracellular thiolate groups in kv4 channels. J. Gen. Physiol. 126, 55–69 (2005).
pubmed: 15955876
pmcid: 2266617
doi: 10.1085/jgp.200509288
Wang, G. & Covarrubias, M. Voltage-dependent gating rearrangements in the intracellular T1–T1 interface of a K
pubmed: 16533897
pmcid: 2151515
doi: 10.1085/jgp.200509442
Barghaan, J., Tozakidou, M., Ehmke, H. & Bähring, R. Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels. Biophys. J. 94, 1276–1294 (2008).
pubmed: 17981906
doi: 10.1529/biophysj.107.111344
Lee, C. H. & MacKinnon, R. Voltage sensor movements during hyperpolarization in the HCN channel. Cell 179, 1582–1589 (2019).
pubmed: 31787376
pmcid: 6911011
doi: 10.1016/j.cell.2019.11.006