Structural basis of gating modulation of Kv4 channel complexes.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
11 2021
Historique:
received: 02 03 2021
accepted: 19 08 2021
pubmed: 24 9 2021
medline: 11 1 2022
entrez: 23 9 2021
Statut: ppublish

Résumé

Modulation of voltage-gated potassium (Kv) channels by auxiliary subunits is central to the physiological function of channels in the brain and heart

Identifiants

pubmed: 34552243
doi: 10.1038/s41586-021-03935-z
pii: 10.1038/s41586-021-03935-z
pmc: PMC8566240
doi:

Substances chimiques

KCNIP1 protein, human 0
Kv Channel-Interacting Proteins 0
Multiprotein Complexes 0
Nerve Tissue Proteins 0
Potassium Channels 0
Shal Potassium Channels 0
DPP6 protein, human EC 3.4.-
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases EC 3.4.14.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

158-164

Informations de copyright

© 2021. The Author(s).

Références

Li, Y., Um, S. Y. & McDonald, T. V. Voltage-gated potassium channels: regulation by accessory subunits. Neuroscientist 12, 199–210 (2006).
pubmed: 16684966 doi: 10.1177/1073858406287717
Coetzee, W. A. et al. Molecular diversity of K
pubmed: 10414301 doi: 10.1111/j.1749-6632.1999.tb11293.x
Zemel, B. M., Ritter, D. M., Covarrubias, M. & Muqeem, T. A-type Kv channels in dorsal root ganglion neurons: diversity, function, and dysfunction. Front. Mol. Neurosci. 11, 253 (2018).
pubmed: 30127716 pmcid: 6088260 doi: 10.3389/fnmol.2018.00253
Covarrubias, M. et al. The neuronal Kv4 channel complex. Neurochem. Res. 33, 1558–1567 (2008).
pubmed: 18357523 pmcid: 5833991 doi: 10.1007/s11064-008-9650-8
Amarillo, Y. et al. Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K
pubmed: 18276729 pmcid: 2465190 doi: 10.1113/jphysiol.2007.150540
O’Malley, H. A. & Isom, L. L. Sodium channel β subunits: emerging targets in channelopathies. Annu. Rev. Physiol. 77, 481–504 (2015).
pubmed: 25668026 pmcid: 4817109 doi: 10.1146/annurev-physiol-021014-071846
Catterall, W. A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3, a003947 (2011).
pubmed: 21746798 pmcid: 3140680 doi: 10.1101/cshperspect.a003947
Catterall, W. A., Wisedchaisri, G. & Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 13, 455–463 (2017).
pubmed: 28406893 pmcid: 5464002 doi: 10.1038/nchembio.2353
McCoy, J. G. & Nimigean, C. M. Structural correlates of selectivity and inactivation in potassium channels. Biochim. Biophys. Acta 1818, 272–285 (2012).
pubmed: 21958666 doi: 10.1016/j.bbamem.2011.09.007
Dixon, J. E. et al. Role of the Kv4.3 K
pubmed: 8831489 doi: 10.1161/01.RES.79.4.659
Jerng, H. H., Pfaffinger, P. J. & Covarrubias, M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol. Cell. Neurosci. 27, 343–369 (2004).
pubmed: 15555915 doi: 10.1016/j.mcn.2004.06.011
Bähring, R. & Covarrubias, M. Mechanisms of closed-state inactivation in voltage-gated ion channels. J. Physiol. 589, 461–479 (2011).
pubmed: 21098008 doi: 10.1113/jphysiol.2010.191965
Blunck, R. & Batulan, Z. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front. Pharmacol. 3, 166 (2012).
pubmed: 22988442 pmcid: 3439648 doi: 10.3389/fphar.2012.00166
Bähring, R., Barghaan, J., Westermeier, R. & Wollberg, J. Voltage sensor inactivation in potassium channels. Front. Pharmacol. 3, 100 (2012).
pubmed: 22654758 pmcid: 3358694 doi: 10.3389/fphar.2012.00100
Fineberg, J. D., Szanto, T. G., Panyi, G. & Covarrubias, M. Closed-state inactivation involving an internal gate in Kv4.1 channels modulates pore blockade by intracellular quaternary ammonium ions. Sci. Rep. 6, 31131 (2016).
pubmed: 27502553 pmcid: 4977472 doi: 10.1038/srep31131
Fineberg, J. D., Ritter, D. M. & Covarrubias, M. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels. J. Gen. Physiol. 140, 513–527 (2012).
pubmed: 23109714 pmcid: 3483116 doi: 10.1085/jgp.201210869
Dougherty, K., Santiago-Castillo, J. A. & Covarrubias, M. Gating charge immobilization in Kv4.2 channels: the basis of closed-state inactivation. J. Gen. Physiol. 131, 257–273 (2008).
pubmed: 18299396 pmcid: 2248721 doi: 10.1085/jgp.200709938
Kaulin, Y. A., Santiago-Castillo, J. A., Rocha, C. A. & Covarrubias, M. Mechanism of the modulation of Kv4:KChIP-1 channels by external K
pubmed: 17951301 doi: 10.1529/biophysj.107.117796
Vardanyan, V. & Pongs, O. Coupling of voltage-sensors to the channel pore: a comparative view. Front. Pharmacol. 3,145 (2012).
pubmed: 22866036 pmcid: 3406610 doi: 10.3389/fphar.2012.00145
Gebauer, M. et al. N-type inactivation features of Kv4.2 channel gating. Biophys. J. 86, 210–223 (2004).
pubmed: 14695263 pmcid: 1303783 doi: 10.1016/S0006-3495(04)74097-7
Barghaan, J. & Bähring, R. Dynamic coupling of voltage sensor and gate involved in closed-state inactivation of kv4.2 channels. J. Gen. Physiol. 133, 205–224 (2009).
pubmed: 19171772 pmcid: 2638201 doi: 10.1085/jgp.200810073
Wollberg, J. & Bähring, R. Intra- and intersubunit dynamic binding in Kv4.2 channel closed-state inactivation. Biophys. J. 110, 157–175 (2016).
pubmed: 26745419 pmcid: 4805869 doi: 10.1016/j.bpj.2015.10.046
Kaulin, Y. A. et al. The dipeptidyl-peptidase-like protein DPP6 determines the unitary conductance of neuronal Kv4.2 channels. J. Neurosci. 29, 3242–3251 (2009).
pubmed: 19279261 pmcid: 3758885 doi: 10.1523/JNEUROSCI.4767-08.2009
An, W. F. et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556 (2000).
pubmed: 10676964 doi: 10.1038/35000592
Kitazawa, M., Kubo, Y. & Nakajo, K. The stoichiometry and biophysical properties of the Kv4 potassium channel complex with K
doi: 10.1074/jbc.M114.563452
Pioletti, M., Findeisen, F., Hura, G. L. & Minor, D. L. Jr. Three-dimensional structure of the KChIP1–Kv4.3 T1 complex reveals a cross-shaped octamer. Nat. Struct. Mol. Biol. 13, 987–995 (2006).
pubmed: 17057713 pmcid: 3018330 doi: 10.1038/nsmb1164
Wang, H. et al. Structural basis for modulation of Kv4 K
pubmed: 17187064 doi: 10.1038/nn1822
Dougherty, K. & Covarrubias, M. A dipeptidyl aminopeptidase-like protein remodels gating charge dynamics in Kv4.2 channels. J. Gen. Physiol. 128, 745–753 (2006).
pubmed: 17130523 pmcid: 2151596 doi: 10.1085/jgp.200609668
Kim, L. A. et al. Three-dimensional structure of I
pubmed: 14980201 doi: 10.1016/S0896-6273(04)00050-9
Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K
pubmed: 16002581 doi: 10.1126/science.1116269
Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K
pubmed: 18004376 doi: 10.1038/nature06265
Tao, X., Lee, A., Limapichat, W., Dougherty, D. A. & MacKinnon, R. A gating charge transfer center in voltage sensors. Science 328, 67–73 (2010).
pubmed: 20360102 pmcid: 2869078 doi: 10.1126/science.1185954
Callsen, B., et al. Contribution of N- and C-terminal Kv4.2 channel domains to KChIP interaction. J. Physiol. 568, 397–412 (2005).
pubmed: 16096338 pmcid: 1474738 doi: 10.1113/jphysiol.2005.094359
Rivera, J. F., Ahmad, S., Quick, M. W., Liman, E. R. & Arnold, D. B. An evolutionarily conserved dileucine motif in Shal K
pubmed: 12592409 doi: 10.1038/nn1020
Beck, E. J., Bowlby, M., An, W. F., Rhodes, K. J. & Covarrubias, M. Remodelling inactivation gating of Kv4 channels by KChIP1, a small-molecular-weight calcium-binding protein. J. Physiol. 538, 691–706 (2002).
pubmed: 11826158 pmcid: 2290090 doi: 10.1113/jphysiol.2001.013127
Wettwer, E., Amos, G. J., Posival, H. & Ravens, U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ. Res. 75, 473–482 (1994).
pubmed: 8062421 doi: 10.1161/01.RES.75.3.473
Radicke, S. et al. Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts. Cardiovasc. Res. 71, 695–703 (2006).
pubmed: 16876774 doi: 10.1016/j.cardiores.2006.06.017
Nadal, M. S. et al. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K
pubmed: 12575952 doi: 10.1016/S0896-6273(02)01185-6
Jerng, H. H., Qian, Y. & Pfaffinger, P. J. Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys. J. 87, 2380–2396 (2004).
pubmed: 15454437 pmcid: 1304660 doi: 10.1529/biophysj.104.042358
Ren, X., Hayashi, Y., Yoshimura, N. & Takimoto, K. Transmembrane interaction mediates complex formation between peptidase homologues and Kv4 channels. Mol. Cell. Neurosci. 29, 320–332 (2005).
pubmed: 15911355 doi: 10.1016/j.mcn.2005.02.003
Dougherty, K., Tu, L., Deutsch, C. & Covarrubias, M. The dipeptidyl-aminopeptidase-like protein 6 is an integral voltage sensor-interacting β-subunit of neuronal K
pubmed: 19372736 doi: 10.4161/chan.3.2.8333
Kitazawa, M., Kubo, Y. & Nakajo, K. Kv4.2 and accessory dipeptidyl peptidase-like protein 10 (DPP10) subunit preferentially form a 4:2 (Kv4.2:DPP10) channel complex. J. Biol. Chem. 290, 22724–22733 (2015).
pubmed: 26209633 pmcid: 4566244 doi: 10.1074/jbc.M115.646794
Strop, P., Bankovich, A. J., Hansen, K. C., Garcia, K. C. & Brunger, A. T. Structure of a human A-type potassium channel interacting protein DPPX, a member of the dipeptidyl aminopeptidase family. J. Mol. Biol. 343, 1055–1065 (2004).
pubmed: 15476821 doi: 10.1016/j.jmb.2004.09.003
Sun, J. & MacKinnon, R. Structural basis of human KCNQ1 modulation and gating. Cell 180, 340–347 (2020).
pubmed: 31883792 doi: 10.1016/j.cell.2019.12.003
Tao, X. & MacKinnon, R. Molecular structures of the human Slo1 K
pubmed: 31815672 pmcid: 6934384 doi: 10.7554/eLife.51409
Pan, X. et al. Structure of the human voltage-gated sodium channel Nav1.4 in complex with β1. Science 362, eaau2486 (2018).
pubmed: 30190309 doi: 10.1126/science.aau2486
Shen, H., Liu, D., Wu, K., Lei, J. & Yan, N. Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. Science 363, 1303–1308 (2019).
pubmed: 30765606 doi: 10.1126/science.aaw2493
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
doi: 10.1016/j.jsb.2005.07.007 pubmed: 16182563
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D. & Urzhumtsev, A. Bulk-solvent and overall scaling revisited: faster calculations, improved results. Acta Crystallogr. D 69, 625–634 (2013).
pubmed: 23519671 pmcid: 3606040 doi: 10.1107/S0907444913000462
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph., 14, 354–360 (1996).
pubmed: 9195488 doi: 10.1016/S0263-7855(97)00009-X
Liman, E., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K
pubmed: 1419000 doi: 10.1016/0896-6273(92)90239-A
Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 48, 452–458 (2013).
pubmed: 23208313 doi: 10.1038/bmt.2012.244
Wang, G. et al. Functionally active t1–t1 interfaces revealed by the accessibility of intracellular thiolate groups in kv4 channels. J. Gen. Physiol. 126, 55–69 (2005).
pubmed: 15955876 pmcid: 2266617 doi: 10.1085/jgp.200509288
Wang, G. & Covarrubias, M. Voltage-dependent gating rearrangements in the intracellular T1–T1 interface of a K
pubmed: 16533897 pmcid: 2151515 doi: 10.1085/jgp.200509442
Barghaan, J., Tozakidou, M., Ehmke, H. & Bähring, R. Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels. Biophys. J. 94, 1276–1294 (2008).
pubmed: 17981906 doi: 10.1529/biophysj.107.111344
Lee, C. H. & MacKinnon, R. Voltage sensor movements during hyperpolarization in the HCN channel. Cell 179, 1582–1589 (2019).
pubmed: 31787376 pmcid: 6911011 doi: 10.1016/j.cell.2019.11.006

Auteurs

Yoshiaki Kise (Y)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan. yoshiaki.kise@bs.s.u-toyko.ac.jp.

Go Kasuya (G)

Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan. gokasuya@jichi.ac.jp.

Hiroyuki H Okamoto (HH)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Daichi Yamanouchi (D)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Kan Kobayashi (K)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Peptidream, Kawasaki, Japan.

Tsukasa Kusakizako (T)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Tomohiro Nishizawa (T)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.

Koichi Nakajo (K)

Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan.

Osamu Nureki (O)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan. nureki@bs.s.u-tokyo.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH