Enhancement of Electrochromic Switching Properties with Tröger's Base-Derived Intrinsic Microporous Polyamide Films.
Tröger's base
electrochromic
intrinsic microporosity
response capability
Journal
Macromolecular rapid communications
ISSN: 1521-3927
Titre abrégé: Macromol Rapid Commun
Pays: Germany
ID NLM: 9888239
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
revised:
28
08
2021
received:
28
07
2021
pubmed:
24
9
2021
medline:
15
12
2021
entrez:
23
9
2021
Statut:
ppublish
Résumé
The formation of Tröger's Base (TB) configuration is a useful approach to synthesize polymers of intrinsic microporosity (PIM). Herein, the V-shaped TB scaffold is incorporated to prepare electrochromic (EC) polyamide with electroactive triphenylamine (TPA) moiety. The presence of intrinsic microporosity derived from inefficient packing of TB scaffolds can facilitate the counterions diffusion between electroactive species and electrolytes. Consequently, the resulting TB-based polyamide exhibits enhanced EC behaviors, such as a lower driving potential, reduced the difference of redox potentials ΔE, and shorter switching response time compared to the corresponding EC counterpart polyamide.
Identifiants
pubmed: 34553802
doi: 10.1002/marc.202100492
doi:
Substances chimiques
Amines
0
Electrolytes
0
Nylons
0
Polymers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2100492Subventions
Organisme : Ministry of Science and Technology in Taiwan
ID : 107-2113-M-002-024-MY3
Organisme : Ministry of Science and Technology in Taiwan
ID : 107-2221-E-002-066-MY3
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
M. Green, Chem. Ind. 1996, 17, 641.
R. J. Mortimer, Chem. Soc. Rev. 1997, 26, 147.
D. R. Rosseinsky, R. J. Mortimer, Adv. Mater. 2001, 13, 783.
A. A. Argun, P.-H. Aubert, B. C. Thompson, I. Schwendeman, C. L. Gaupp, J. Hwang, N. J. Pinto, D. B. Tanner, A. G. Macdiarmid, J. R. Reynolds, Chem. Mater. 2004, 16, 4401.
A. L. Dyer, A. M. Österholm, D. E. Shen, K. E. Johnson, J. R. Reynolds, Electrochromic Materials Devices, 2015, 113.
B.-C. Pan, W.-H. Chen, S.-H. Hsiao, G.-S. Liou, Nanoscale 2018, 10, 16613.
B.-C. Pan, W.-H. Chen, T.-M. Lee, G.-S. Liou, J. Mater. Chem. C 2018, 6, 12422.
Q. Hao, Z.-J. Li, C. Lu, B. Sun, Y.-W. Zhong, L.-J. Wan, D. Wang, J. Am. Chem. Soc. 2019, 141, 19831.
S. Xiong, Y. Wang, X. Wang, J. Chu, R. Zhang, M. Gong, B. Wu, Z. Li, Sol. Energy Mater. Sol. Cells 2020, 209, 110438.
F. Yu, W. Liu, S. W. Ke, M. Kurmoo, J. L. Zuo, Q. Zhang, Nat. Commun. 2020, 11, 5534.
D. Bessinger, K. Muggli, M. Beetz, F. Auras, T. Bein, J. Am. Chem. Soc. 2021, 143, 7351.
C. R. Wade, M. Li, M. Dincă, Angew. Chem., Int. Ed. 2013, 52, 13377.
J. Liu, X. Y. D. Ma, Z. Wang, L. Xu, T. Xu, C. He, F. Wang, X. Lu, ACS Appl. Mater. Interfaces 2020, 12, 7442.
Z. Zeng, X. Peng, J. Zheng, C. Xu, ACS Appl. Mater. Interfaces 2021, 13, 4133.
Y.-W. Chiu, W. S. Tan, J.-S. Yang, M.-H. Pai, G.-S. Liou, Macromol. Rapid Commun. 2020, 41, 2000186.
Ö. V. Rúnarsson, J. Artacho, K. Wärnmark, Eur. J. Org. Chem. 2012, 2012, 7015.
M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. Mckeown, Science 2013, 339, 303.
Y. Zhuang, J. G. Seong, Y. S. Do, W. H. Lee, M. J. Lee, M. D. Guiver, Y. M. Lee, J. Membr. Sci. 2016, 504, 55.
Z. Wang, D. Wang, F. Zhang, J. Jin, ACS Macro Lett. 2014, 3, 597.
Y. Xiao, L. Zhang, L. Xu, T.-S. Chung, J. Membr. Sci. 2017, 521, 65.
M. Lee, C. G. Bezzu, M. Carta, P. Bernardo, G. Clarizia, J. C. Jansen, N. B. Mckeown, Macromolecules 2016, 49, 4147.
Z. Yang, R. Guo, R. Malpass-Evans, M. Carta, N. B. Mckeown, M. D. Guiver, L. Wu, T. Xu, Angew. Chem. 2016, 128, 11671.
J. Zhou, Z. Jiao, Q. Zhu, Y. Li, L. Ge, L. Wu, Z. Yang, T. Xu, J. Membr. Sci. 2021, 627, 119246.
J. Zhou, Y. Liu, P. Zuo, Y. Li, Y. Dong, L. Wu, Z. Yang, T. Xu, J. Membr. Sci. 2021, 620, 118832.
M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, Inc., Hoboken, NJ 2008, p. 233.