Enhancement of Electrochromic Switching Properties with Tröger's Base-Derived Intrinsic Microporous Polyamide Films.

Tröger's base electrochromic intrinsic microporosity response capability

Journal

Macromolecular rapid communications
ISSN: 1521-3927
Titre abrégé: Macromol Rapid Commun
Pays: Germany
ID NLM: 9888239

Informations de publication

Date de publication:
Dec 2021
Historique:
revised: 28 08 2021
received: 28 07 2021
pubmed: 24 9 2021
medline: 15 12 2021
entrez: 23 9 2021
Statut: ppublish

Résumé

The formation of Tröger's Base (TB) configuration is a useful approach to synthesize polymers of intrinsic microporosity (PIM). Herein, the V-shaped TB scaffold is incorporated to prepare electrochromic (EC) polyamide with electroactive triphenylamine (TPA) moiety. The presence of intrinsic microporosity derived from inefficient packing of TB scaffolds can facilitate the counterions diffusion between electroactive species and electrolytes. Consequently, the resulting TB-based polyamide exhibits enhanced EC behaviors, such as a lower driving potential, reduced the difference of redox potentials ΔE, and shorter switching response time compared to the corresponding EC counterpart polyamide.

Identifiants

pubmed: 34553802
doi: 10.1002/marc.202100492
doi:

Substances chimiques

Amines 0
Electrolytes 0
Nylons 0
Polymers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2100492

Subventions

Organisme : Ministry of Science and Technology in Taiwan
ID : 107-2113-M-002-024-MY3
Organisme : Ministry of Science and Technology in Taiwan
ID : 107-2221-E-002-066-MY3

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

M. Green, Chem. Ind. 1996, 17, 641.
R. J. Mortimer, Chem. Soc. Rev. 1997, 26, 147.
D. R. Rosseinsky, R. J. Mortimer, Adv. Mater. 2001, 13, 783.
A. A. Argun, P.-H. Aubert, B. C. Thompson, I. Schwendeman, C. L. Gaupp, J. Hwang, N. J. Pinto, D. B. Tanner, A. G. Macdiarmid, J. R. Reynolds, Chem. Mater. 2004, 16, 4401.
A. L. Dyer, A. M. Österholm, D. E. Shen, K. E. Johnson, J. R. Reynolds, Electrochromic Materials Devices, 2015, 113.
B.-C. Pan, W.-H. Chen, S.-H. Hsiao, G.-S. Liou, Nanoscale 2018, 10, 16613.
B.-C. Pan, W.-H. Chen, T.-M. Lee, G.-S. Liou, J. Mater. Chem. C 2018, 6, 12422.
Q. Hao, Z.-J. Li, C. Lu, B. Sun, Y.-W. Zhong, L.-J. Wan, D. Wang, J. Am. Chem. Soc. 2019, 141, 19831.
S. Xiong, Y. Wang, X. Wang, J. Chu, R. Zhang, M. Gong, B. Wu, Z. Li, Sol. Energy Mater. Sol. Cells 2020, 209, 110438.
F. Yu, W. Liu, S. W. Ke, M. Kurmoo, J. L. Zuo, Q. Zhang, Nat. Commun. 2020, 11, 5534.
D. Bessinger, K. Muggli, M. Beetz, F. Auras, T. Bein, J. Am. Chem. Soc. 2021, 143, 7351.
C. R. Wade, M. Li, M. Dincă, Angew. Chem., Int. Ed. 2013, 52, 13377.
J. Liu, X. Y. D. Ma, Z. Wang, L. Xu, T. Xu, C. He, F. Wang, X. Lu, ACS Appl. Mater. Interfaces 2020, 12, 7442.
Z. Zeng, X. Peng, J. Zheng, C. Xu, ACS Appl. Mater. Interfaces 2021, 13, 4133.
Y.-W. Chiu, W. S. Tan, J.-S. Yang, M.-H. Pai, G.-S. Liou, Macromol. Rapid Commun. 2020, 41, 2000186.
Ö. V. Rúnarsson, J. Artacho, K. Wärnmark, Eur. J. Org. Chem. 2012, 2012, 7015.
M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. Mckeown, Science 2013, 339, 303.
Y. Zhuang, J. G. Seong, Y. S. Do, W. H. Lee, M. J. Lee, M. D. Guiver, Y. M. Lee, J. Membr. Sci. 2016, 504, 55.
Z. Wang, D. Wang, F. Zhang, J. Jin, ACS Macro Lett. 2014, 3, 597.
Y. Xiao, L. Zhang, L. Xu, T.-S. Chung, J. Membr. Sci. 2017, 521, 65.
M. Lee, C. G. Bezzu, M. Carta, P. Bernardo, G. Clarizia, J. C. Jansen, N. B. Mckeown, Macromolecules 2016, 49, 4147.
Z. Yang, R. Guo, R. Malpass-Evans, M. Carta, N. B. Mckeown, M. D. Guiver, L. Wu, T. Xu, Angew. Chem. 2016, 128, 11671.
J. Zhou, Z. Jiao, Q. Zhu, Y. Li, L. Ge, L. Wu, Z. Yang, T. Xu, J. Membr. Sci. 2021, 627, 119246.
J. Zhou, Y. Liu, P. Zuo, Y. Li, Y. Dong, L. Wu, Z. Yang, T. Xu, J. Membr. Sci. 2021, 620, 118832.
M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, Inc., Hoboken, NJ 2008, p. 233.

Auteurs

Min-Hao Pai (MH)

Institute of Polymer Science and Engineering, National Taiwan University, 1 Roosevelt Road, 4th Sec., Taipei, 10617, Taiwan.

Chien-Chieh Hu (CC)

Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Keelung Rd., Sec.4, Da'an Dist., Taipei, 106335, Taiwan.

Guey-Sheng Liou (GS)

Institute of Polymer Science and Engineering, National Taiwan University, 1 Roosevelt Road, 4th Sec., Taipei, 10617, Taiwan.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Huntington Disease Mitochondria Neurons Mice
Nanoparticles Needles Polylactic Acid-Polyglycolic Acid Copolymer Polyethylene Glycols Curcumin

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing

Classifications MeSH