Continual knowledge infusion into pre-trained biomedical language models.


Journal

Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944

Informations de publication

Date de publication:
03 01 2022
Historique:
received: 09 05 2021
revised: 12 09 2021
accepted: 20 09 2021
pubmed: 24 9 2021
medline: 3 2 2023
entrez: 23 9 2021
Statut: ppublish

Résumé

Biomedical language models produce meaningful concept representations that are useful for a variety of biomedical natural language processing (bioNLP) applications such as named entity recognition, relationship extraction and question answering. Recent research trends have shown that the contextualized language models (e.g. BioBERT, BioELMo) possess tremendous representational power and are able to achieve impressive accuracy gains. However, these models are still unable to learn high-quality representations for concepts with low context information (i.e. rare words). Infusing the complementary information from knowledge-bases (KBs) is likely to be helpful when the corpus-specific information is insufficient to learn robust representations. Moreover, as the biomedical domain contains numerous KBs, it is imperative to develop approaches that can integrate the KBs in a continual fashion. We propose a new representation learning approach that progressively fuses the semantic information from multiple KBs into the pretrained biomedical language models. Since most of the KBs in the biomedical domain are expressed as parent-child hierarchies, we choose to model the hierarchical KBs and propose a new knowledge modeling strategy that encodes their topological properties at a granular level. Moreover, the proposed continual learning technique efficiently updates the concepts representations to accommodate the new knowledge while preserving the memory efficiency of contextualized language models. Altogether, the proposed approach generates knowledge-powered embeddings with high fidelity and learning efficiency. Extensive experiments conducted on bioNLP tasks validate the efficacy of the proposed approach and demonstrates its capability in generating robust concept representations.

Identifiants

pubmed: 34554186
pii: 6374496
doi: 10.1093/bioinformatics/btab671
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

494-502

Subventions

Organisme : US National Science Foundation
ID : IIS-2008208

Informations de copyright

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Auteurs

Kishlay Jha (K)

Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA.

Aidong Zhang (A)

Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH