Disulfiram-loaded lactoferrin nanoparticles for treating inflammatory diseases.


Journal

Acta pharmacologica Sinica
ISSN: 1745-7254
Titre abrégé: Acta Pharmacol Sin
Pays: United States
ID NLM: 100956087

Informations de publication

Date de publication:
11 2021
Historique:
received: 21 06 2021
accepted: 22 08 2021
pubmed: 26 9 2021
medline: 9 11 2021
entrez: 25 9 2021
Statut: ppublish

Résumé

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.

Identifiants

pubmed: 34561552
doi: 10.1038/s41401-021-00770-w
pii: 10.1038/s41401-021-00770-w
pmc: PMC8461433
doi:

Substances chimiques

Acetaldehyde Dehydrogenase Inhibitors 0
Anti-Inflammatory Agents 0
Drug Carriers 0
Immunosuppressive Agents 0
Lipopolysaccharides 0
Lactoferrin EC 3.4.21.-
Disulfiram TR3MLJ1UAI

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1913-1920

Informations de copyright

© 2021. The Author(s), under exclusive licence to CPS and SIMM.

Références

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–10.
pubmed: 26903338 pmcid: 4968574 doi: 10.1001/jama.2016.0287
Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–11.
pubmed: 31954465 pmcid: 6970225 doi: 10.1016/S0140-6736(19)32989-7
Xie J, Wang H, Kang Y, Zhou L, Liu Z, Qin B, et al. The epidemiology of sepsis in Chinese ICUs: a national cross-sectional survey. Crit Care Med. 2020;48:e209–e18.
pubmed: 31804299 doi: 10.1097/CCM.0000000000004155
Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol. 2018;9:2147.
pubmed: 30319615 pmcid: 6170629 doi: 10.3389/fimmu.2018.02147
Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395:1517–20.
pubmed: 32311318 pmcid: 7164875 doi: 10.1016/S0140-6736(20)30920-X
Ponsford MJ, Gkatzionis A, Walker VM, Grant AJ, Wootton RE, Moore LSP, et al. Cardiometabolic traits, sepsis, and severe COVID-19: a mendelian randomization investigation. Circulation. 2020;142:1791–3.
pubmed: 32966752 pmcid: 7594537 doi: 10.1161/CIRCULATIONAHA.120.050753
Remy KE, Brakenridge SC, Francois B, Daix T, Deutschman CS, Monneret G, et al. Immunotherapies for COVID-19: lessons learned from sepsis. Lancet Respir Med. 2020;8:946–9.
pubmed: 32444269 pmcid: 7195015 doi: 10.1016/S2213-2600(20)30217-4
Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Nat Rev Dis Prim. 2016;2:16045.
pubmed: 28117397 doi: 10.1038/nrdp.2016.45
Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018;14:417–27.
pubmed: 29691495 doi: 10.1038/s41581-018-0005-7
Ma KC, Schenck EJ, Pabon MA, Choi AMK. The role of danger signals in the pathogenesis and perpetuation of critical illness. Am J Respir Crit Care Med. 2018;197:300–9.
pubmed: 28977759 pmcid: 5811949 doi: 10.1164/rccm.201612-2460PP
Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62.
pubmed: 21219181 pmcid: 4536551 doi: 10.1146/annurev-immunol-030409-101323
Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40:463–75.
pubmed: 24745331 doi: 10.1016/j.immuni.2014.04.001
Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016;35:1766–78.
pubmed: 27418190 pmcid: 5010048 doi: 10.15252/embj.201694696
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–8.
pubmed: 27383986 pmcid: 5539988 doi: 10.1038/nature18629
Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–22.
pubmed: 24855941 doi: 10.1016/j.cell.2014.04.007
He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 2015;25:1285–98.
pubmed: 26611636 pmcid: 4670995 doi: 10.1038/cr.2015.139
Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21:736–45.
pubmed: 32367036 pmcid: 7316630 doi: 10.1038/s41590-020-0669-6
Deng W, Yang Z, Yue H, Ou Y, Hu W, Sun P. Disulfiram suppresses NLRP3 inflammasome activation to treat peritoneal and gouty inflammation. Free Radic Biol Med. 2020;152:8–17.
pubmed: 32151746 doi: 10.1016/j.freeradbiomed.2020.03.007
Johansson B. A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatr Scand Suppl. 1992;86:15–26.
doi: 10.1111/j.1600-0447.1992.tb03310.x
Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano. 2013;7:5858–69.
pubmed: 23734880 doi: 10.1021/nn4010796
Deng N, Li M, Shen D, He Q, Sun W, Liu M, et al. LRP1 receptor-mediated immunosuppression of alpha-MMC on monocytes. Int Immunopharmacol. 2019;70:80–7.
pubmed: 30785094 doi: 10.1016/j.intimp.2019.01.036
Manzoni P, Dall’Agnola A, Tomé D, Kaufman DA, Tavella E, Pieretto M, et al. Role of lactoferrin in neonates and infants: an update. Am J Perinatol. 2018;35:561–5.
pubmed: 29694997 doi: 10.1055/s-0038-1639359
Elzoghby AO, Abdelmoneem MA, Hassanin IA, Abd Elwakil MM, Elnaggar MA, Mokhtar S, et al. Lactoferrin, a multi-functional glycoprotein: active therapeutic, drug nanocarrier & targeting ligand. Biomaterials. 2020;263:120355.
pubmed: 32932142 pmcid: 7480805 doi: 10.1016/j.biomaterials.2020.120355
Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, et al. Ulcerative colitis. Nat Rev Dis Prim. 2020;6:74.
pubmed: 32913180 doi: 10.1038/s41572-020-0205-x
Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390:2769–78.
pubmed: 29050646 doi: 10.1016/S0140-6736(17)32448-0
Olén O, Erichsen R, Sachs MC, Pedersen L, Halfvarson J, Askling J, et al. Colorectal cancer in ulcerative colitis: a Scandinavian population-based cohort study. Lancet. 2020;395:123–31.
pubmed: 31929014 doi: 10.1016/S0140-6736(19)32545-0
Bopanna S, Ananthakrishnan AN, Kedia S, Yajnik V, Ahuja V. Risk of colorectal cancer in Asian patients with ulcerative colitis: a systematic review and meta-analysis. Lancet. Gastroenterol Hepatol. 2017;2:269–76.
Cohen J, Vincent JL, Adhikari NK, Machado FR, Angus DC, Calandra T, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15:581–614.
pubmed: 25932591 doi: 10.1016/S1473-3099(15)70112-X
Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585.
pubmed: 27217054 doi: 10.1136/bmj.i1585
Steinhagen F, Schmidt SV, Schewe JC, Peukert K, Klinman DM, Bode C. Immunotherapy in sepsis - brake or accelerate? Pharmacol Ther. 2020;208:107476.
pubmed: 31931100 doi: 10.1016/j.pharmthera.2020.107476
Fink MP. Animal models of sepsis and its complications. Kidney Int. 2008;74:991–3.
pubmed: 18827799 doi: 10.1038/ki.2008.442
Drago-Serrano ME, de la Garza-Amaya M, Luna JS, Campos-Rodriguez R. Lactoferrin-lipopolysaccharide (LPS) binding as key to antibacterial and antiendotoxic effects. Int Immunopharmacol. 2012;12:1–9.
pubmed: 22101278 doi: 10.1016/j.intimp.2011.11.002
Kruzel ML, Harari Y, Mailman D, Actor JK, Zimecki M. Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin Exp Immunol. 2002;130:25–31.
pubmed: 12296849 pmcid: 1906493 doi: 10.1046/j.1365-2249.2002.01956.x
Doursout MF, Horton H, Hoang L, Liang Y, Hwang SA, Boyd S, et al. Lactoferrin moderates LPS-induced hypotensive response and gut injury in rats. Int Immunopharmacol. 2013;15:227–31.
doi: 10.1016/j.intimp.2012.12.009 pubmed: 23267765
Kruzel ML, Zimecki M, Actor JK. Lactoferrin in a context of inflammation-induced pathology. Front Immunol. 2017;8:1438.
pubmed: 29163511 pmcid: 5681489 doi: 10.3389/fimmu.2017.01438
Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med. 2011;365:1713–25.
pubmed: 22047562 doi: 10.1056/NEJMra1102942
Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet. 2017;389:1756–70.
pubmed: 27914657 doi: 10.1016/S0140-6736(16)32126-2
Peyrin-Biroulet L, Lémann M. Review article: remission rates achievable by current therapies for inflammatory bowel disease. Aliment Pharmacol Ther. 2011;33:870–9.
pubmed: 21323689 doi: 10.1111/j.1365-2036.2011.04599.x
Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16:531–43.
pubmed: 31312042 doi: 10.1038/s41575-019-0172-4
Mowat AM. To respond or not to respond - a personal perspective of intestinal tolerance. Nat Rev Immunol. 2018;18:405–15.
pubmed: 29491358 doi: 10.1038/s41577-018-0002-x
Zhao Y, Yang Y, Zhang J, Wang R, Cheng B, Kalambhe D, et al. Lactoferrin-mediated macrophage targeting delivery and patchouli alcohol-based therapeutic strategy for inflammatory bowel diseases. Acta Pharm Sin B. 2020;10:1966–76.
pubmed: 33163347 pmcid: 7606100 doi: 10.1016/j.apsb.2020.07.019
Davis EM, Zhang D, Glover SC, Stappenbeck TS, Liu JJ. Su1832 – inhibition of intestinal epithelial cell pyroptosis and associated mucosal barrier defects is a potential therapeutic mechanism of action for mesalamine in Ibd. Gastroenterology. 2019;156:S–627.
Ren TH, Lv MM, An XM, Leung WK, Seto WK. Activation of adenosine A3 receptor inhibits inflammatory cytokine production in colonic mucosa of patients with ulcerative colitis by down-regulating the nuclear factor-kappa B signaling. J Dig Dis. 2020;21:38–45.
pubmed: 31714673 doi: 10.1111/1751-2980.12831
Wu X, Pan S, Luo W, Shen Z, Meng X, Xiao M, et al. Roseburia intestinalis‑derived flagellin ameliorates colitis by targeting miR‑223‑3p‑mediated activation of NLRP3 inflammasome and pyroptosis. Mol Med Rep. 2020;22:2695–704.
pubmed: 32700754 pmcid: 7453595

Auteurs

An-Te Ou (AT)

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, 528437, China.

Jia-Xin Zhang (JX)

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

Yue-Fei Fang (YF)

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 501450, China.

Rong Wang (R)

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
Nanchang University College of Pharmacy, Nanchang, 330006, China.

Xue-Ping Tang (XP)

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 501450, China.

Peng-Fei Zhao (PF)

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

Yu-Ge Zhao (YG)

Tongji University School of Medicine, Shanghai, 200092, China.

Meng Zhang (M)

Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.

Yong-Zhuo Huang (YZ)

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. yzhuang@simm.ac.cn.
University of Chinese Academy of Sciences, Beijing, 100049, China. yzhuang@simm.ac.cn.
Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, 528437, China. yzhuang@simm.ac.cn.
NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, 201203, China. yzhuang@simm.ac.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH