Arginine Methylation of hnRNPK Inhibits the DDX3-hnRNPK Interaction to Play an Anti-Apoptosis Role in Osteosarcoma Cells.
Amino Acid Motifs
Apoptosis
/ genetics
Arginine
/ metabolism
Cell Line, Tumor
DEAD-box RNA Helicases
/ chemistry
DNA Damage
DNA-Binding Proteins
/ metabolism
Heterogeneous-Nuclear Ribonucleoprotein K
/ genetics
Humans
Methylation
Models, Molecular
Mutation
Osteosarcoma
/ metabolism
Protein Binding
Protein Conformation
Protein Interaction Domains and Motifs
DDX3
DNA damage
apoptosis
hnRNPK
protein–protein interaction
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
09 Sep 2021
09 Sep 2021
Historique:
received:
04
08
2021
revised:
03
09
2021
accepted:
06
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
3
11
2021
Statut:
epublish
Résumé
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA binding protein involved in diverse cell processes; it is also a p53 coregulator that initiates apoptosis under DNA damage conditions. However, the upregulation of hnRNPK is correlated with cancer transformation, progression, and migration, whereas the regulatory role of hnRNPK in cancer malignancy remains unclear. We previously showed that arginine methylation of hnRNPK attenuated the apoptosis of U2OS osteosarcoma cells under DNA damage conditions, whereas the replacement of endogenous hnRNPK with a methylation-defective mutant inversely enhanced apoptosis. The present study further revealed that an RNA helicase, DDX3, whose C-terminus preferentially binds to the unmethylated hnRNPK and could promote such apoptotic enhancement. Moreover, C-terminus-truncated DDX3 induced significantly less apoptosis than full-length DDX3. Notably, we also identified a small molecule that docks at the ATP-binding site of DDX3, promotes the DDX3-hnRNPK interaction, and induces further apoptosis. Overall, we have shown that the arginine methylation of hnRNPK suppresses the apoptosis of U2OS cells via interfering with DDX3-hnRNPK interaction. On the other hand, DDX3-hnRNPK interaction with a proapoptotic role may serve as a target for promoting apoptosis in osteosarcoma cells.
Identifiants
pubmed: 34575922
pii: ijms22189764
doi: 10.3390/ijms22189764
pmc: PMC8469703
pii:
doi:
Substances chimiques
DNA-Binding Proteins
0
Heterogeneous-Nuclear Ribonucleoprotein K
0
HNRNPK protein, human
146410-60-8
Arginine
94ZLA3W45F
DDX3X protein, human
EC 3.6.1.-
DEAD-box RNA Helicases
EC 3.6.4.13
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Cell Death Dis. 2015 Mar 19;6:e1700
pubmed: 25789975
Pharmacol Ther. 2016 Sep;165:1-13
pubmed: 27179744
Mol Metab. 2019 Jul;25:95-106
pubmed: 31023625
EMBO J. 2012 Nov 28;31(23):4441-52
pubmed: 23092970
Am J Cancer Res. 2016 Jan 15;6(2):387-402
pubmed: 27186411
Cell Death Differ. 2010 Sep;17(9):1463-73
pubmed: 20224598
J Biol Chem. 2016 Jan 29;291(5):2412-21
pubmed: 26598523
Front Genet. 2014 Dec 05;5:423
pubmed: 25538732
Sci Rep. 2015 Dec 07;5:17732
pubmed: 26638989
EMBO Mol Med. 2015 Mar 27;7(5):648-69
pubmed: 25820276
Nat Commun. 2019 Jul 12;10(1):3085
pubmed: 31300642
Transl Oncol. 2018 Jun;11(3):755-763
pubmed: 29684792
PLoS Pathog. 2015 Jan 08;11(1):e1004573
pubmed: 25569684
J Biol Chem. 2013 May 24;288(21):15046-56
pubmed: 23564449
PLoS One. 2010 Sep 30;5(9):
pubmed: 20941364
Clin Exp Med. 2017 Aug;17(3):291-304
pubmed: 27600282
EMBO J. 1992 Jul;11(7):2643-54
pubmed: 1378397
Oncogene. 2016 May 19;35(20):2574-83
pubmed: 26364611
Nucleic Acids Res. 2014 Sep;42(15):9908-24
pubmed: 25104022
Cell. 2010 Aug 6;142(3):409-19
pubmed: 20673990
Cell Death Dis. 2019 Aug 7;10(8):593
pubmed: 31391454
Oncotarget. 2015 Jul 30;6(21):18602-12
pubmed: 26087195
J Biol Chem. 2006 Apr 21;281(16):11115-25
pubmed: 16492668
Mol Metab. 2019 Aug;26:45-56
pubmed: 31178390
Mol Cancer. 2015 Nov 05;14:188
pubmed: 26541825
Crit Rev Biochem Mol Biol. 2014 Jul-Aug;49(4):343-60
pubmed: 25039764
Oncotarget. 2015 Aug 14;6(23):19826-40
pubmed: 26305187
EMBO J. 2003 Mar 17;22(6):1431-41
pubmed: 12628935
Cancer Res. 2016 Nov 1;76(21):6340-6350
pubmed: 27634756
Exp Cell Res. 2009 Nov 15;315(19):3250-8
pubmed: 19747914
Bioorg Med Chem Lett. 2012 Mar 1;22(5):2094-8
pubmed: 22300661
Biomed Rep. 2016 Jun;4(6):657-663
pubmed: 27284403
J Natl Cancer Inst. 2020 Jan 1;112(1):95-106
pubmed: 31077320
Biochem J. 2012 Jan 1;441(1):119-29
pubmed: 21883093
ScientificWorldJournal. 2010 Nov 16;10:2272-84
pubmed: 21103796
Biochimie. 2019 Sep;164:83-94
pubmed: 30910425
Nat Commun. 2016 Jan 19;7:10180
pubmed: 26782714
Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):505-16
pubmed: 21779027
Oncol Rep. 2016 Aug;36(2):929-35
pubmed: 27278897
Proteomics. 2006 Apr;6(8):2395-406
pubmed: 16518874
Int J Oncol. 2014 May;44(5):1589-98
pubmed: 24626777
J Biol Chem. 2006 Mar 3;281(9):5734-40
pubmed: 16377624
Biol Chem. 2009 Dec;390(12):1237-50
pubmed: 19747077
Biochim Biophys Acta. 2013 Jun;1833(6):1489-97
pubmed: 23470959
Cancer Lett. 2014 Oct 1;352(2):152-9
pubmed: 25016060
Protein J. 2007 Feb;26(2):87-93
pubmed: 17191129
J Cell Physiol. 2020 Mar;235(3):1995-2008
pubmed: 31538344
Bioorg Med Chem. 2013 Feb 1;21(3):618-31
pubmed: 23290252
Oncogene. 2015 May 21;34(21):2790-800
pubmed: 25043297
Oncogene. 2008 Jan 24;27(5):700-14
pubmed: 17667941
Proteome Sci. 2015 Sep 02;13:23
pubmed: 26336360