Single-molecule junction spontaneously restored by DNA zipper.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
01 10 2021
Historique:
received: 25 12 2019
accepted: 07 09 2021
entrez: 2 10 2021
pubmed: 3 10 2021
medline: 25 2 2023
Statut: epublish

Résumé

The electrical properties of DNA have been extensively investigated within the field of molecular electronics. Previous studies on this topic primarily focused on the transport phenomena in the static structure at thermodynamic equilibria. Consequently, the properties of higher-order structures of DNA and their structural changes associated with the design of single-molecule electronic devices have not been fully studied so far. This stems from the limitation that only extremely short DNA is available for electrical measurements, since the single-molecule conductance decreases sharply with the increase in the molecular length. Here, we report a DNA zipper configuration to form a single-molecule junction. The duplex is accommodated in a nanogap between metal electrodes in a configuration where the duplex is perpendicular to the nanogap axis. Electrical measurements reveal that the single-molecule junction of the 90-mer DNA zipper exhibits high conductance due to the delocalized π system. Moreover, we find an attractive self-restoring capability that the single-molecule junction can be repeatedly formed without full structural breakdown even after electrical failure. The DNA zipping strategy presented here provides a basis for novel designs of single-molecule junctions.

Identifiants

pubmed: 34599166
doi: 10.1038/s41467-021-25943-3
pii: 10.1038/s41467-021-25943-3
pmc: PMC8486845
doi:

Substances chimiques

DNA 9007-49-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5762

Informations de copyright

© 2021. The Author(s).

Références

Phys Chem Chem Phys. 2013 Feb 21;15(7):2253-67
pubmed: 23258372
Nano Lett. 2018 Oct 10;18(10):6318-6325
pubmed: 30234311
J Am Chem Soc. 2003 Jul 30;125(30):9014-5
pubmed: 15369348
Sci Rep. 2018 Jun 4;8(1):8517
pubmed: 29867186
J Am Chem Soc. 2011 Jun 15;133(23):9124-8
pubmed: 21561093
Nano Lett. 2006 Sep;6(9):1973-6
pubmed: 16968010
Science. 1999 Jan 15;283(5400):375-81
pubmed: 9888851
Nat Nanotechnol. 2009 May;4(5):297-301
pubmed: 19421214
J Chem Theory Comput. 2011 Jun 14;7(6):1979-89
pubmed: 26596457
Chem Commun (Camb). 2017 Sep 19;53(75):10378-10381
pubmed: 28875207
Nanoscale. 2012 Aug 21;4(16):4916-24
pubmed: 22786690
Sci Rep. 2015 Nov 24;5:17107
pubmed: 26596470
Nat Nanotechnol. 2011 Dec 11;7(2):119-25
pubmed: 22157724
J Chem Phys. 2014 Jul 21;141(3):035102
pubmed: 25053341
J R Soc Interface. 2013 Jul 24;10(87):20130415
pubmed: 23883952
Chem Commun (Camb). 2015 Jan 31;51(9):1666-9
pubmed: 25503307
Nano Lett. 2012 Mar 14;12(3):1157-64
pubmed: 22372476
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8608-13
pubmed: 11447279
Nat Chem. 2016 May;8(5):484-90
pubmed: 27102683
ACS Nano. 2017 Nov 28;11(11):11169-11181
pubmed: 28968085
Nature. 2000 Jul 6;406(6791):51-3
pubmed: 10894536
Nano Lett. 2015 Aug 12;15(8):5641-6
pubmed: 26156085
J Am Chem Soc. 2003 Dec 31;125(52):16164-5
pubmed: 14692738
Nat Nanotechnol. 2016 Feb;11(2):127-36
pubmed: 26839258
Phys Rev Lett. 2014 Oct 17;113(16):168101
pubmed: 25361282
Nano Lett. 2019 Feb 13;19(2):921-929
pubmed: 30484321
ACS Nano. 2013 Jun 25;7(6):5391-401
pubmed: 23692478
Nat Nanotechnol. 2018 Apr;13(4):316-321
pubmed: 29483600
Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11277-82
pubmed: 10500167
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11589-93
pubmed: 16087871
Nat Commun. 2015 Dec 09;6:8870
pubmed: 26648400
Nat Mater. 2012 Oct;11(10):872-6
pubmed: 22886066
Chem Commun (Camb). 2013 Apr 28;49(33):3437-9
pubmed: 23508214
Nat Commun. 2017 Feb 20;8:14471
pubmed: 28218275
Nat Chem. 2015 Mar;7(3):221-6
pubmed: 25698331
J Am Chem Soc. 2011 Nov 30;133(47):19189-97
pubmed: 21991939
Science. 2017 Nov 3;358(6363):672-676
pubmed: 28882993
Nano Lett. 2009 Nov;9(11):3909-13
pubmed: 19685928
Phys Rev Lett. 2006 Jul 14;97(2):026801
pubmed: 16907471
J Phys Chem C Nanomater Interfaces. 2010 Dec 9;114(48):20443-20448
pubmed: 21197382
J Am Chem Soc. 2015 Aug 12;137(31):9971-81
pubmed: 26181714
Nat Nanotechnol. 2010 Dec;5(12):868-73
pubmed: 21076404

Auteurs

Takanori Harashima (T)

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-11 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.

Shintaro Fujii (S)

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-11 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.

Yuki Jono (Y)

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-11 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.

Tsuyoshi Terakawa (T)

Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.

Noriyuki Kurita (N)

Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, 441-8580, Japan.

Satoshi Kaneko (S)

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-11 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.

Manabu Kiguchi (M)

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-11 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.

Tomoaki Nishino (T)

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-11 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan. tnishino@chem.titech.ac.jp.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics
DNA Methylation Humans DNA Animals Machine Learning

Classifications MeSH