Biotechnological potential of Zymotis-2 bioreactor for the cultivation of filamentous fungi.
Aspergillus niger
Beauveria bassiana
Trichoderma asperellum
biopesticides
enzymes
hydric stress
secondary metabolites
Journal
Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
revised:
24
09
2021
received:
01
06
2021
accepted:
27
09
2021
pubmed:
3
10
2021
medline:
19
1
2022
entrez:
2
10
2021
Statut:
ppublish
Résumé
A new prototype of Solid-State Fermentation Bioreactor, namely "Zymotis-2 ", was developed to produce fungal spores. A fermentation process for fungal spores, and hydrolase enzymes (endo and exoglucanases, amylases) production by Trichoderma asperellum DWG3, Aspergillus niger G131 and Beauveria bassiana was scaled-up from flasks and glass Raimbault column packed with 20 g of solid substrates (dry weight) to 5 kg of solid substrate by using the new Zymotis-2 bioreactor. Fungi strains growth using a mix of vine shoots, wheat bran, and olive pomace was tested under similar experimental conditions in Zymotis-2 bioreactor, column bioreactor and flasks in a parallel fermentation system. Overall, significant spore production on Zymotis-2 bioreactor was obtained, achieving 22.01 ± 0.01×10 In conclusion, a high yield of spores was obtained at 137 h of cultivation time, confirming the validity of the new Zymotis-2 bioreactor to produce virulent spores at low cost by T. asperellum, B. bassiana and A. niger G131.
Sections du résumé
BACKGROUND/AIM
OBJECTIVE
A new prototype of Solid-State Fermentation Bioreactor, namely "Zymotis-2 ", was developed to produce fungal spores.
MAIN METHODS AND MAJOR RESULTS
RESULTS
A fermentation process for fungal spores, and hydrolase enzymes (endo and exoglucanases, amylases) production by Trichoderma asperellum DWG3, Aspergillus niger G131 and Beauveria bassiana was scaled-up from flasks and glass Raimbault column packed with 20 g of solid substrates (dry weight) to 5 kg of solid substrate by using the new Zymotis-2 bioreactor. Fungi strains growth using a mix of vine shoots, wheat bran, and olive pomace was tested under similar experimental conditions in Zymotis-2 bioreactor, column bioreactor and flasks in a parallel fermentation system. Overall, significant spore production on Zymotis-2 bioreactor was obtained, achieving 22.01 ± 0.01×10
CONCLUSIONS AND IMPLICATIONS
CONCLUSIONS
In conclusion, a high yield of spores was obtained at 137 h of cultivation time, confirming the validity of the new Zymotis-2 bioreactor to produce virulent spores at low cost by T. asperellum, B. bassiana and A. niger G131.
Identifiants
pubmed: 34599625
doi: 10.1002/biot.202100288
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2100288Subventions
Organisme : French National Research Institute for Sustainable Development (IRD)
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
Carboué, Q., Rébufa, C., Dupuy, N., Roussos, S., & Bombarda, I. (2019). Solid state fermentation pilot-scaled plug flow bioreactor, using partial least square regression to predict the residence time in a semi continuous process. Biochemical Engineering Journal,149, 107-248.
Hamrouni, R., Molinet, J., Mitropoulou, K. Y., Dupuy, N., Masmoudi, A. & Roussos, S. (2019a). From flasks to single used bioreactor: Scale-up of solid-state fermentation process for metabolites and conidia production by Trichoderma asperellum. Journal of Environmental Management, 252, 109-496.
Pandey, A., Soccol, C. R. & Larroche, C. (2008). Current developments in solid state fermentation. Springer, Asia tech Publishers Inc.
Raimbault, M. & Alazard, D. (1980). Culture method to study fungal growth in solid fermentation. Applied Microbiology and Biotechnology, 9, 199-209.
Roussos, S., Lonsane, B. K., Raimbault, M. & Viniegra Gonzalez, G. (1997). Advances in solid state fermentation. (p. 631). Kluwer Academic Publishers, Dordrecht.
Mishra, S., Kumar, P., & Malik, A. (2016). Suitability of agricultural by-products as production medium for spore production by Beauveria bassiana HQ917687. The International Journal of Recycling of Organic Waste in Agriculture, 5(2), 179-184.
Singh, S., Singh, S., Bali, V., Sharma, L., & Mangla, J. (2014). Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry. BioMed Research International, ID 215748. 2014(9), 215748, https://doi.org/10.1155/2014/215748.
De la Cruz-Quiroz, R., Carrillo-Nieves, D., Aguilar-Zárate, P., Carrillo-Inungaray, M. L., Parra-Saldívar, R., & Hafiz, M. N. (2018). Utilization of lignocellulose-based orange peel waste for induced sporulation of Trichoderma asperellum via box-behnken matrix design. BioResources, 13(2), 3971-3985.
Arora, S., Rani, R., & Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269, 16-34.
Roussos, S., Raimbault, M., Prebois, J. P., & Lonsane, B. K. (1993). Zymotis, a large scale solid state fermenter - design and evaluation. Applied Microbiology and Biotechnology, 42, 37-52.
Maiga, Y., Carboue, Q., Hamrouni, R., Tranier, M., Ben menadi, Y., & Roussos, S. (2020). Development and evaluation of a disposable solid-state culture packed-bed bioreactor for the production of conidia from trichoderma asperellum grown under water stress. Waste and Biomass Valorization, doi-org.lama.univ-amu.fr/10.1007/s12649-020-01210-2 IF=2.851 Q2. 2021(11), 3223-3231.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-428.
Nava-Cruz, N. Y., Contreras-Esquivel, J. C., Aguilar-González, M. A., Nuncio, A., Rodríguez-Herrera, R., & Aguilar, C. N. (2016). Agave atrovirens fibers as substrate and support for solid-state fermentation for cellulase production by Trichoderma asperellum. Biotechnology Journal, 6(1), 115, https://doi.org/10.1007/s13205-016-0426-6.
Mandels, M., Andreotti, R., & Roche, C. (1976). Measurement of saccharifying cellulase. Biotechnology and Bioengineering Symposium, 6, 21-33.
Gaston, F., Dupuy, N., Marque, S. R. A., Barbaroux, M., & Dorey, S. (2016). One year monitoring by FTIR of γ-irradiated multilayer film PE/EVOH/PE. Radiation Physics and Chemistry, 125, 115-121.
Hamrouni, R., Molinet, J., Dupuy, N., Taieb, N., Carboue, Q., Masmoudi, A. & Roussos, S. (2020b). The effect of aeration for 6-pentyl-alpha-pyrone, conidia and lytic enzymes production by Trichoderma asperellum strains grown in solid-state fermentation. Waste and Biomass Valorization, 2020(11), 5711-5720, https://doi.org/10.1007/s12649-019-00809-4IF=2.851Q2
Zhang, J. D., & Yang, Q. (2015). Optimization of solid-state fermentation conditions for Trichoderma harzianum using an orthogonal test. Genetics and Molecular Research [Electronic Resource], 14(1), 1771-1781.
De la Cruz-Quiroz, R., Roussos, S., Hernandez-Castillo, D., Rodriguez-Herrera, R., Lopez- Lopez, L. I., Castillo, F., & Aguilar, C. N. (2017a). Solid-state fermentation in a bag bioreactor: Effect of corn cob mixed with phytopathogen biomass on spore and cellulase production by Trichoderma asperellum. In tech: Fermentation Processes, 3, 43-56.
Kancelista, A., Tril, U., Stempniewickz, R., Piegza, M., Szczech, M., & Witowska, D. (2013). Application of lignocellulosic waste materials for the production and stabilization of Trichoderma biomass. Polish Journal of Environmental Studies, 22(4), 1083-1090.
Singh, A., Srivastava, S., & Singh, H. B. (2007). Effect of substrates on growth and shelf life of Trichoderma harzianum and its use in biocontrol of diseases. Bioresource Technology, 2007(98), 470-473.
Hamrouni, R., Claeys-Bruno, M., Molinet, J., Masmoudi, A., Roussos, S., & Dupuy, N. (2020). Challenges of enzymes, conidia and 6-pentyl-alpha- pyrone production from Solid-State-Fermentation of agroindustrial wastes using Experimental design and T.asperellum strains. Waste and Biomass Valorization, 2020(11), 5699-5710, https://doi.org/10.1007/s12649-019-00908-2IF=2.851Q2.
De la Cruz-Quiroz, R., Robledo-Padilla, F., Aguilar, C. N., & Roussos, S. (2017b). Forced aeration influence on the production of spores by Trichoderma strains. Waste and Biomass Valorization, 8, 2263-2270.
Jin, X., & Custis, D. (2011). Microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures. Biological Control, 56, 202-8.
Dalla-Santa, H. S., Sousa, N. J., & Brand, D. (2004). Conidia production of Beauveria sp. by solid-state fermentation for biocontrol of Ilex paraguariensis Caterpillars. Folia Microbiol, 49, 418-22.
Xie, L., Chen, H. M., & Yang, J. B. (2013). Conidia production by Beauveria bassiana on rice in solid-state fermentation using tray bioreactor. Advanced Materials Research Transactions Technology Publication, 16, 3478-3482.
Pham, T. A., Kim, J. J., & Kim, K. (2010). Optimization of solid-state fermentation for improved conidia production of Beauveria bassiana as a mycoinsecticide. Mycobiology, 38(2), 137-143.
Petlamul, W., Sripornngam, T., Buakwan, N., Buakaew, S., & Mahamad, K. (2017). The capability of Beauveria Bassiana for cellulase enzyme production. Conference Paper. 7th International Conference on Bioscience, Biochemistry and Bioinformatics, 62-66.
Dhillon, G. S., Oberoi, H. S., Kaur, S., Bansal, S., & Brar, S. K. (2011). Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Industrial Crops and Products, 34, 1160-1167.
Lakshmi, A. S., & Narasimha, G. (2012). Production of cellulases by fungal cultures isolated from forest litter soil. Annals of Operations Research, 55, 85-92.