Biotechnological potential of Zymotis-2 bioreactor for the cultivation of filamentous fungi.

Aspergillus niger Beauveria bassiana Trichoderma asperellum biopesticides enzymes hydric stress secondary metabolites

Journal

Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833

Informations de publication

Date de publication:
Jan 2022
Historique:
revised: 24 09 2021
received: 01 06 2021
accepted: 27 09 2021
pubmed: 3 10 2021
medline: 19 1 2022
entrez: 2 10 2021
Statut: ppublish

Résumé

A new prototype of Solid-State Fermentation Bioreactor, namely "Zymotis-2 ", was developed to produce fungal spores. A fermentation process for fungal spores, and hydrolase enzymes (endo and exoglucanases, amylases) production by Trichoderma asperellum DWG3, Aspergillus niger G131 and Beauveria bassiana was scaled-up from flasks and glass Raimbault column packed with 20 g of solid substrates (dry weight) to 5 kg of solid substrate by using the new Zymotis-2 bioreactor. Fungi strains growth using a mix of vine shoots, wheat bran, and olive pomace was tested under similar experimental conditions in Zymotis-2 bioreactor, column bioreactor and flasks in a parallel fermentation system. Overall, significant spore production on Zymotis-2 bioreactor was obtained, achieving 22.01 ± 0.01×10 In conclusion, a high yield of spores was obtained at 137 h of cultivation time, confirming the validity of the new Zymotis-2 bioreactor to produce virulent spores at low cost by T. asperellum, B. bassiana and A. niger G131.

Sections du résumé

BACKGROUND/AIM OBJECTIVE
A new prototype of Solid-State Fermentation Bioreactor, namely "Zymotis-2 ", was developed to produce fungal spores.
MAIN METHODS AND MAJOR RESULTS RESULTS
A fermentation process for fungal spores, and hydrolase enzymes (endo and exoglucanases, amylases) production by Trichoderma asperellum DWG3, Aspergillus niger G131 and Beauveria bassiana was scaled-up from flasks and glass Raimbault column packed with 20 g of solid substrates (dry weight) to 5 kg of solid substrate by using the new Zymotis-2 bioreactor. Fungi strains growth using a mix of vine shoots, wheat bran, and olive pomace was tested under similar experimental conditions in Zymotis-2 bioreactor, column bioreactor and flasks in a parallel fermentation system. Overall, significant spore production on Zymotis-2 bioreactor was obtained, achieving 22.01 ± 0.01×10
CONCLUSIONS AND IMPLICATIONS CONCLUSIONS
In conclusion, a high yield of spores was obtained at 137 h of cultivation time, confirming the validity of the new Zymotis-2 bioreactor to produce virulent spores at low cost by T. asperellum, B. bassiana and A. niger G131.

Identifiants

pubmed: 34599625
doi: 10.1002/biot.202100288
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2100288

Subventions

Organisme : French National Research Institute for Sustainable Development (IRD)

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

Carboué, Q., Rébufa, C., Dupuy, N., Roussos, S., & Bombarda, I. (2019). Solid state fermentation pilot-scaled plug flow bioreactor, using partial least square regression to predict the residence time in a semi continuous process. Biochemical Engineering Journal,149, 107-248.
Hamrouni, R., Molinet, J., Mitropoulou, K. Y., Dupuy, N., Masmoudi, A. & Roussos, S. (2019a). From flasks to single used bioreactor: Scale-up of solid-state fermentation process for metabolites and conidia production by Trichoderma asperellum. Journal of Environmental Management, 252, 109-496.
Pandey, A., Soccol, C. R. & Larroche, C. (2008). Current developments in solid state fermentation. Springer, Asia tech Publishers Inc.
Raimbault, M. & Alazard, D. (1980). Culture method to study fungal growth in solid fermentation. Applied Microbiology and Biotechnology, 9, 199-209.
Roussos, S., Lonsane, B. K., Raimbault, M. & Viniegra Gonzalez, G. (1997). Advances in solid state fermentation. (p. 631). Kluwer Academic Publishers, Dordrecht.
Mishra, S., Kumar, P., & Malik, A. (2016). Suitability of agricultural by-products as production medium for spore production by Beauveria bassiana HQ917687. The International Journal of Recycling of Organic Waste in Agriculture, 5(2), 179-184.
Singh, S., Singh, S., Bali, V., Sharma, L., & Mangla, J. (2014). Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry. BioMed Research International, ID 215748. 2014(9), 215748, https://doi.org/10.1155/2014/215748.
De la Cruz-Quiroz, R., Carrillo-Nieves, D., Aguilar-Zárate, P., Carrillo-Inungaray, M. L., Parra-Saldívar, R., & Hafiz, M. N. (2018). Utilization of lignocellulose-based orange peel waste for induced sporulation of Trichoderma asperellum via box-behnken matrix design. BioResources, 13(2), 3971-3985.
Arora, S., Rani, R., & Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269, 16-34.
Roussos, S., Raimbault, M., Prebois, J. P., & Lonsane, B. K. (1993). Zymotis, a large scale solid state fermenter - design and evaluation. Applied Microbiology and Biotechnology, 42, 37-52.
Maiga, Y., Carboue, Q., Hamrouni, R., Tranier, M., Ben menadi, Y., & Roussos, S. (2020). Development and evaluation of a disposable solid-state culture packed-bed bioreactor for the production of conidia from trichoderma asperellum grown under water stress. Waste and Biomass Valorization, doi-org.lama.univ-amu.fr/10.1007/s12649-020-01210-2 IF=2.851 Q2. 2021(11), 3223-3231.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-428.
Nava-Cruz, N. Y., Contreras-Esquivel, J. C., Aguilar-González, M. A., Nuncio, A., Rodríguez-Herrera, R., & Aguilar, C. N. (2016). Agave atrovirens fibers as substrate and support for solid-state fermentation for cellulase production by Trichoderma asperellum. Biotechnology Journal, 6(1), 115, https://doi.org/10.1007/s13205-016-0426-6.
Mandels, M., Andreotti, R., & Roche, C. (1976). Measurement of saccharifying cellulase. Biotechnology and Bioengineering Symposium, 6, 21-33.
Gaston, F., Dupuy, N., Marque, S. R. A., Barbaroux, M., & Dorey, S. (2016). One year monitoring by FTIR of γ-irradiated multilayer film PE/EVOH/PE. Radiation Physics and Chemistry, 125, 115-121.
Hamrouni, R., Molinet, J., Dupuy, N., Taieb, N., Carboue, Q., Masmoudi, A. & Roussos, S. (2020b). The effect of aeration for 6-pentyl-alpha-pyrone, conidia and lytic enzymes production by Trichoderma asperellum strains grown in solid-state fermentation. Waste and Biomass Valorization, 2020(11), 5711-5720, https://doi.org/10.1007/s12649-019-00809-4IF=2.851Q2
Zhang, J. D., & Yang, Q. (2015). Optimization of solid-state fermentation conditions for Trichoderma harzianum using an orthogonal test. Genetics and Molecular Research [Electronic Resource], 14(1), 1771-1781.
De la Cruz-Quiroz, R., Roussos, S., Hernandez-Castillo, D., Rodriguez-Herrera, R., Lopez- Lopez, L. I., Castillo, F., & Aguilar, C. N. (2017a). Solid-state fermentation in a bag bioreactor: Effect of corn cob mixed with phytopathogen biomass on spore and cellulase production by Trichoderma asperellum. In tech: Fermentation Processes, 3, 43-56.
Kancelista, A., Tril, U., Stempniewickz, R., Piegza, M., Szczech, M., & Witowska, D. (2013). Application of lignocellulosic waste materials for the production and stabilization of Trichoderma biomass. Polish Journal of Environmental Studies, 22(4), 1083-1090.
Singh, A., Srivastava, S., & Singh, H. B. (2007). Effect of substrates on growth and shelf life of Trichoderma harzianum and its use in biocontrol of diseases. Bioresource Technology, 2007(98), 470-473.
Hamrouni, R., Claeys-Bruno, M., Molinet, J., Masmoudi, A., Roussos, S., & Dupuy, N. (2020). Challenges of enzymes, conidia and 6-pentyl-alpha- pyrone production from Solid-State-Fermentation of agroindustrial wastes using Experimental design and T.asperellum strains. Waste and Biomass Valorization, 2020(11), 5699-5710, https://doi.org/10.1007/s12649-019-00908-2IF=2.851Q2.
De la Cruz-Quiroz, R., Robledo-Padilla, F., Aguilar, C. N., & Roussos, S. (2017b). Forced aeration influence on the production of spores by Trichoderma strains. Waste and Biomass Valorization, 8, 2263-2270.
Jin, X., & Custis, D. (2011). Microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures. Biological Control, 56, 202-8.
Dalla-Santa, H. S., Sousa, N. J., & Brand, D. (2004). Conidia production of Beauveria sp. by solid-state fermentation for biocontrol of Ilex paraguariensis Caterpillars. Folia Microbiol, 49, 418-22.
Xie, L., Chen, H. M., & Yang, J. B. (2013). Conidia production by Beauveria bassiana on rice in solid-state fermentation using tray bioreactor. Advanced Materials Research Transactions Technology Publication, 16, 3478-3482.
Pham, T. A., Kim, J. J., & Kim, K. (2010). Optimization of solid-state fermentation for improved conidia production of Beauveria bassiana as a mycoinsecticide. Mycobiology, 38(2), 137-143.
Petlamul, W., Sripornngam, T., Buakwan, N., Buakaew, S., & Mahamad, K. (2017). The capability of Beauveria Bassiana for cellulase enzyme production. Conference Paper. 7th International Conference on Bioscience, Biochemistry and Bioinformatics, 62-66.
Dhillon, G. S., Oberoi, H. S., Kaur, S., Bansal, S., & Brar, S. K. (2011). Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Industrial Crops and Products, 34, 1160-1167.
Lakshmi, A. S., & Narasimha, G. (2012). Production of cellulases by fungal cultures isolated from forest litter soil. Annals of Operations Research, 55, 85-92.

Auteurs

Rayhane Hamrouni (R)

Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.
Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia.

Nathalie Dupuy (N)

Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.

Alina Karachurina (A)

Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.

Gregoria Mitropoulou (G)

Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, GR 68100, Greece.

Yiannis Kourkoutas (Y)

Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, GR 68100, Greece.

Josiane Molinet (J)

Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.

Ynoussa Maiga (Y)

Laboratoire de Microbiologie et de Biotechnologie Microbienne, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso.

Sevastianos Roussos (S)

Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.

Articles similaires

Animals Rumen Methane Fermentation Cannabis

Metabolic engineering of

Jae Sung Cho, Zi Wei Luo, Cheon Woo Moon et al.
1.00
Corynebacterium glutamicum Metabolic Engineering Dicarboxylic Acids Pyridines Pyrones
Corynebacterium glutamicum Tyramine Metabolic Engineering Phylogeny Fermentation

Classifications MeSH