Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
08 11 2021
Historique:
accepted: 17 09 2021
revised: 13 09 2021
received: 05 08 2021
pubmed: 5 10 2021
medline: 24 12 2021
entrez: 4 10 2021
Statut: ppublish

Résumé

To provide protection against viral infection and limit the uptake of mobile genetic elements, bacteria and archaea have evolved many diverse defence systems. The discovery and application of CRISPR-Cas adaptive immune systems has spurred recent interest in the identification and classification of new types of defence systems. Many new defence systems have recently been reported but there is a lack of accessible tools available to identify homologs of these systems in different genomes. Here, we report the Prokaryotic Antiviral Defence LOCator (PADLOC), a flexible and scalable open-source tool for defence system identification. With PADLOC, defence system genes are identified using HMM-based homologue searches, followed by validation of system completeness using gene presence/absence and synteny criteria specified by customisable system classifications. We show that PADLOC identifies defence systems with high accuracy and sensitivity. Our modular approach to organising the HMMs and system classifications allows additional defence systems to be easily integrated into the PADLOC database. To demonstrate application of PADLOC to biological questions, we used PADLOC to identify six new subtypes of known defence systems and a putative novel defence system comprised of a helicase, methylase and ATPase. PADLOC is available as a standalone package (https://github.com/padlocbio/padloc) and as a webserver (https://padloc.otago.ac.nz).

Identifiants

pubmed: 34606606
pii: 6381132
doi: 10.1093/nar/gkab883
pmc: PMC8565338
doi:

Substances chimiques

Archaeal Proteins 0
Bacterial Proteins 0
DNA Modification Methylases EC 2.1.1.-
Adenosine Triphosphatases EC 3.6.1.-
DNA Helicases EC 3.6.4.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10868-10878

Informations de copyright

© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432
pubmed: 30357350
PLoS One. 2014 Oct 17;9(10):e110726
pubmed: 25330359
Nat Commun. 2020 Jun 4;11(1):2816
pubmed: 32499527
Bioinformatics. 2001 Mar;17(3):282-3
pubmed: 11294794
Science. 2017 Aug 11;357(6351):605-609
pubmed: 28663439
Nucleic Acids Res. 2020 Jan 8;48(D1):D590-D598
pubmed: 31620779
J Mol Biol. 2018 Jul 20;430(15):2237-2243
pubmed: 29258817
Nature. 2020 Jan;577(7790):327-336
pubmed: 31942051
Nucleic Acids Res. 2016 Aug 19;44(14):6614-24
pubmed: 27342282
Nucleic Acids Res. 2018 Jan 4;46(D1):D749-D753
pubmed: 29106666
BMC Bioinformatics. 2019 Sep 14;20(1):473
pubmed: 31521110
Brief Bioinform. 2019 Jul 19;20(4):1063-1070
pubmed: 28968633
Nat Biotechnol. 2017 Nov;35(11):1026-1028
pubmed: 29035372
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Science. 2020 Aug 28;369(6507):1077-1084
pubmed: 32855333
Nat Rev Microbiol. 2013 Oct;11(10):675-87
pubmed: 23979432
BMC Bioinformatics. 2007 May 23;8:172
pubmed: 17521438
Nucleic Acids Res. 2018 Jan 4;46(D1):D851-D860
pubmed: 29112715
Nat Microbiol. 2020 Dec;5(12):1608-1615
pubmed: 32839535
Nucleic Acids Res. 2013 Apr;41(8):4360-77
pubmed: 23470997
Nat Biotechnol. 2020 Jul;38(7):824-844
pubmed: 32572269
Science. 2018 Mar 2;359(6379):
pubmed: 29371424
Methods Mol Biol. 2009;501:81-5
pubmed: 19066813
BMC Genomics. 2016 May 17;17:356
pubmed: 27184979
Nat Rev Microbiol. 2020 Feb;18(2):113-119
pubmed: 31695182
Nucleic Acids Res. 2018 Jul 2;46(W1):W246-W251
pubmed: 29790974
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W52-7
pubmed: 17537822
CRISPR J. 2020 Dec;3(6):462-469
pubmed: 33275853
J Virol. 2011 Nov;85(21):11265-73
pubmed: 21865376
Cell. 2020 Dec 10;183(6):1551-1561.e12
pubmed: 33157039
J Bacteriol. 2011 Nov;193(21):6039-56
pubmed: 21908672
Microbiol Mol Biol Rev. 2016 Jul 13;80(3):745-63
pubmed: 27412881
PLoS Comput Biol. 2019 Apr 25;15(4):e1006946
pubmed: 31022176
Nat Microbiol. 2018 Jan;3(1):90-98
pubmed: 29085076
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):E5307-E5316
pubmed: 29784811
CRISPR J. 2018 Apr;1:171-181
pubmed: 31021201
Annu Rev Biochem. 2020 Jun 20;89:309-332
pubmed: 32186918
Gigascience. 2020 Jun 1;9(6):
pubmed: 32556168
Nat Biotechnol. 2020 Sep;38(9):1079-1086
pubmed: 32341564
PLoS One. 2016 Oct 5;11(10):e0163962
pubmed: 27706213
Nature. 2018 Oct;562(7726):277-280
pubmed: 30232454
Nat Rev Microbiol. 2020 Feb;18(2):67-83
pubmed: 31857715
EMBO J. 2015 Jan 13;34(2):169-83
pubmed: 25452498
PLoS Comput Biol. 2011 Oct;7(10):e1002195
pubmed: 22039361
Mol Biol Evol. 2020 May 1;37(5):1530-1534
pubmed: 32011700
Front Genet. 2014 Apr 30;5:102
pubmed: 24817877
Mol Biol Evol. 2018 Feb 1;35(2):518-522
pubmed: 29077904
Nat Rev Microbiol. 2018 Jan;16(1):5-11
pubmed: 28736447
Nature. 2017 Aug 31;548(7669):543-548
pubmed: 28722012
Nucleic Acids Res. 2019 Jan 8;47(D1):D666-D677
pubmed: 30289528
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13264-71
pubmed: 25197070
Nat Rev Microbiol. 2015 Nov;13(11):722-36
pubmed: 26411297
mSystems. 2020 Jul 28;5(4):
pubmed: 32723795
BMC Bioinformatics. 2010 Mar 08;11:119
pubmed: 20211023
Nucleic Acids Res. 2021 Jan 8;49(D1):D266-D273
pubmed: 33237325
Nature. 2019 Oct;574(7780):691-695
pubmed: 31533127
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363
Methods Mol Biol. 2009;501:203-19
pubmed: 19066823
Nat Rev Microbiol. 2011 Jun;9(6):467-77
pubmed: 21552286
Annu Rev Microbiol. 2017 Sep 8;71:233-261
pubmed: 28657885
Bioinformatics. 2014 Jul 15;30(14):2068-9
pubmed: 24642063
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Nucleic Acids Res. 2020 Dec 16;48(22):12632-12647
pubmed: 33275130
Nucleic Acids Res. 2015 Jan;43(Database issue):D298-9
pubmed: 25378308
Nucleic Acids Res. 2014 Jan;42(1):3-19
pubmed: 24141096

Auteurs

Leighton J Payne (LJ)

Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.

Thomas C Todeschini (TC)

School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.

Yi Wu (Y)

School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.

Benjamin J Perry (BJ)

Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.

Clive W Ronson (CW)

Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
Genetics Otago, University of Otago, Dunedin, New Zealand.

Peter C Fineran (PC)

Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
Genetics Otago, University of Otago, Dunedin, New Zealand.
Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand.
Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand.

Franklin L Nobrega (FL)

School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.

Simon A Jackson (SA)

Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
Genetics Otago, University of Otago, Dunedin, New Zealand.
Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand.
Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Hemiptera Insect Proteins Phylogeny Insecticides

Classifications MeSH