Adhesion force evolution of protein on the surfaces with varied hydration extent: Quantitative determination via atomic force microscopy.

AFM Adhesion forces Bovine serum albumin protein Chemical force spectroscopy Hydration layers Hydrophobicity

Journal

Journal of colloid and interface science
ISSN: 1095-7103
Titre abrégé: J Colloid Interface Sci
Pays: United States
ID NLM: 0043125

Informations de publication

Date de publication:
15 Feb 2022
Historique:
received: 25 07 2021
revised: 05 09 2021
accepted: 21 09 2021
pubmed: 10 10 2021
medline: 15 12 2021
entrez: 9 10 2021
Statut: ppublish

Résumé

The adhesion force evolution of protein on surfaces with continuously varied hydrophobicity/hydration layer has not been completely clarified yet, limiting the further development of environmental applications such as membrane anti-biofouling and selective adsorption of the functional surfaces. Herein, chemical force spectroscopy using atomic force microscopy (AFM) was utilized to quantify the evolution of the adhesion forces of protein on hydration surfaces in water, where bovine serum albumin (BSA) was immobilized on an AFM tip as the representative protein. The stiffness, roughness and charge properties of the substrate surfaces were kept constant and the hydrophobicity was the only variant to monitor the role of hydrated water layers in protein adhesion. The adhesion force increased non-monotonically as a function of hydrophobicity of substrate surfaces, which was related to the concentration of humic acid, and independent of pH values and ionic strength. The non-monotonic variation occurred in the range of contact angle at 60-80° due to the mutual restriction between solid-liquid interface energy and solid-solid interface energy. Hydrophobic attraction was the dominant force that drove adhesion of BSA to these model substrate surfaces, but the passivation of hydration layers at the interface could weaken the hydrophobic attraction. In contrast to the measurements in water, the adhesion forces decreased as a function of surface hydrophobicity when measured in air, because capillary forces from condensation water dominated adhesion forces. The passivation of hydration layers of protein was revealed by quantitatively determining the evolution of adhesion forces on the hydration surfaces of varying hydrophobicity, which was ignored by traditional adhesion theory.

Identifiants

pubmed: 34626972
pii: S0021-9797(21)01590-3
doi: 10.1016/j.jcis.2021.09.131
pii:
doi:

Substances chimiques

Serum Albumin, Bovine 27432CM55Q

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

255-264

Informations de copyright

Copyright © 2021 Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Yuyao Zhang (Y)

Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China. Electronic address: yuyaozhang@zju.edu.cn.

Xiaoying Zhu (X)

Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China. Electronic address: zhux@zju.edu.cn.

Baoliang Chen (B)

Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China. Electronic address: blchen@zju.edu.cn.

Articles similaires

Characterization of 3D printed composite for final dental restorations.

Lucas Eigi Borges Tanaka, Camila da Silva Rodrigues, Manassés Tércio Vieira Grangeiro et al.
1.00
Composite Resins Materials Testing Printing, Three-Dimensional Surface Properties Flexural Strength

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing
Ultraviolet Rays Disinfection Ultrasonography Surface Properties Humans
Anthraquinones Kinetics Water Purification Adsorption Thermodynamics

Classifications MeSH