Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2.
Adipose Tissue
/ metabolism
Adiposity
/ genetics
Animals
Biomarkers
Cell Respiration
/ genetics
Chromosomes, Human, Pair 17
Disease Models, Animal
Disease Susceptibility
Female
Gene Expression Profiling
Gene Expression Regulation
Genetic Association Studies
Humans
Male
Metabolic Syndrome
/ diagnosis
Mice
Mitochondria
/ genetics
NADH Dehydrogenase
/ genetics
Polymorphism, Single Nucleotide
Quantitative Trait Loci
Quantitative Trait, Heritable
Reactive Oxygen Species
/ metabolism
Sex Factors
Journal
Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
14
09
2020
accepted:
17
09
2021
pubmed:
27
10
2021
medline:
4
1
2022
entrez:
26
10
2021
Statut:
ppublish
Résumé
We have previously suggested a central role for mitochondria in the observed sex differences in metabolic traits. However, the mechanisms by which sex differences affect adipose mitochondrial function and metabolic syndrome are unclear. Here we show that in both mice and humans, adipose mitochondrial functions are elevated in females and are strongly associated with adiposity, insulin resistance and plasma lipids. Using a panel of diverse inbred strains of mice, we identify a genetic locus on mouse chromosome 17 that controls mitochondrial mass and function in adipose tissue in a sex- and tissue-specific manner. This locus contains Ndufv2 and regulates the expression of at least 89 mitochondrial genes in females, including oxidative phosphorylation genes and those related to mitochondrial DNA content. Overexpression studies indicate that Ndufv2 mediates these effects by regulating supercomplex assembly and elevating mitochondrial reactive oxygen species production, which generates a signal that increases mitochondrial biogenesis.
Identifiants
pubmed: 34697471
doi: 10.1038/s42255-021-00481-w
pii: 10.1038/s42255-021-00481-w
pmc: PMC8909918
mid: NIHMS1777029
doi:
Substances chimiques
Biomarkers
0
Reactive Oxygen Species
0
NADH Dehydrogenase
EC 1.6.99.3
NDUFV2 protein, human
EC 7.1.1.2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1552-1568Subventions
Organisme : NIDDK NIH HHS
ID : K99 DK120875
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL125863
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL147187
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL144651
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK117850
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL028481
Pays : United States
Organisme : NIDDK NIH HHS
ID : U54 DK120342
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK063491
Pays : United States
Organisme : NIAAA NIH HHS
ID : R01 AA026914
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001881
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK041301
Pays : United States
Organisme : NIDDK NIH HHS
ID : R00 DK120875
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Seldin, M., Yang, X. & Lusis, A. J. Systems genetics applications in metabolism research. Nat. Metab. 1, 1038–1050 (2019).
pubmed: 32259026
pmcid: 7111511
doi: 10.1038/s42255-019-0132-x
Bennett, B. J. et al. A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res. 20, 281–290 (2010).
pubmed: 20054062
pmcid: 2813484
doi: 10.1101/gr.099234.109
Parks, B. W. et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 17, 141–152 (2013).
pubmed: 23312289
pmcid: 3545283
doi: 10.1016/j.cmet.2012.12.007
Parks, B. W. et al. Genetic architecture of insulin resistance in the mouse. Cell Metab. 21, 334–347 (2015).
pubmed: 25651185
pmcid: 4349439
doi: 10.1016/j.cmet.2015.01.002
Chella Krishnan, K. et al. Sex-specific metabolic functions of adipose Lipocalin-2. Mol. Metab. 30, 30–47 (2019).
pubmed: 31767179
pmcid: 6812340
doi: 10.1016/j.molmet.2019.09.009
Norheim, F. et al. Genetic, dietary, and sex-specific regulation of hepatic ceramides and the relationship between hepatic ceramides and IR. J. Lipid Res. 59, 1164–1174 (2018).
pubmed: 29739864
pmcid: 6027922
doi: 10.1194/jlr.M081398
Norheim, F. et al. Genetic and hormonal control of hepatic steatosis in female and male mice. J. Lipid Res. 58, 178–187 (2017).
pubmed: 27811231
doi: 10.1194/jlr.M071522
Org, E. et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322 (2016).
pubmed: 27355107
pmcid: 4988450
doi: 10.1080/19490976.2016.1203502
Chella Krishnan, K. et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Syst. 6, 103–115 e107 (2018).
pubmed: 29361464
doi: 10.1016/j.cels.2017.12.006
Hui, S. T. et al. The genetic architecture of diet-Induced hepatic fibrosis in mice. Hepatology 68, 2182–2196 (2018).
pubmed: 29907965
doi: 10.1002/hep.30113
Norheim, F. et al. Gene-by-sex interactions in mitochondrial functions and cardio-metabolic traits. Cell Metab. 29, 932–949 e934 (2019).
pubmed: 30639359
pmcid: 6447452
doi: 10.1016/j.cmet.2018.12.013
Seldin, M. M. et al. A strategy for discovery of endocrine interactions with application to whole-body metabolism. Cell Metab. 27, 1138–1155 e1136 (2018).
pubmed: 29719227
pmcid: 5935137
doi: 10.1016/j.cmet.2018.03.015
Seldin, M. M. et al. A systems genetics approach identifies Trp53inp2 as a link between cardiomyocyte glucose utilization and hypertrophic response. Am. J. Physiol. Heart Circ. Physiol. 312, H728–H741 (2017).
pubmed: 28235788
pmcid: 5407157
doi: 10.1152/ajpheart.00068.2016
Yin, X. et al. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J. Clin. Endocrinol. Metab. 99, E209–E216 (2014).
pubmed: 24276464
doi: 10.1210/jc.2013-3042
Chouchani, E. T. et al. Complex I deficiency due to selective loss of Ndufs4 in the mouse heart results in severe hypertrophic cardiomyopathy. PLoS ONE 9, e94157 (2014).
pubmed: 24705922
pmcid: 3976382
doi: 10.1371/journal.pone.0094157
Begriche, K., Igoudjil, A., Pessayre, D. & Fromenty, B. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6, 1–28 (2006).
pubmed: 16406828
doi: 10.1016/j.mito.2005.10.004
Sanyal, A. J. et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120, 1183–1192 (2001).
pubmed: 11266382
doi: 10.1053/gast.2001.23256
Kim, J. A., Wei, Y. & Sowers, J. R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401–414 (2008).
pubmed: 18309108
pmcid: 2963150
doi: 10.1161/CIRCRESAHA.107.165472
Mittelstrass, K. et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet. 7, e1002215 (2011).
pubmed: 21852955
pmcid: 3154959
doi: 10.1371/journal.pgen.1002215
White, U. A. & Tchoukalova, Y. D. Sex dimorphism and depot differences in adipose tissue function. Biochim. Biophys. Acta 1842, 377–392 (2014).
pubmed: 23684841
doi: 10.1016/j.bbadis.2013.05.006
Yang, X. et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16, 995–1004 (2006).
pubmed: 16825664
pmcid: 1524872
doi: 10.1101/gr.5217506
Karp, N. A. et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat. Commun. 8, 15475 (2017).
pubmed: 28650954
pmcid: 5490203
doi: 10.1038/ncomms15475
Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev. Genet. 39, 359–407 (2005).
pubmed: 16285865
pmcid: 2821041
doi: 10.1146/annurev.genet.39.110304.095751
Franzen, O. et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science 353, 827–830 (2016).
pubmed: 27540175
pmcid: 5534139
doi: 10.1126/science.aad6970
Consortium, G. T. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
doi: 10.1038/nature24277
Robin, E. D. & Wong, R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell. Physiol. 136, 507–513 (1988).
pubmed: 3170646
doi: 10.1002/jcp.1041360316
Laakso, M. et al. The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. J. Lipid Res. 58, 481–493 (2017).
pubmed: 28119442
pmcid: 5335588
doi: 10.1194/jlr.O072629
Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–D1257 (2016).
pubmed: 26450961
doi: 10.1093/nar/gkv1003
Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).
pubmed: 25662011
pmcid: 4498261
doi: 10.1016/j.cell.2015.01.012
Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).
pubmed: 23812712
doi: 10.1126/science.1230381
Garcia-Poyatos, C. et al. Scaf1 promotes respiratory supercomplexes and metabolic efficiency in zebrafish. Embo Rep. 21, e50287 (2020).
pubmed: 32496654
pmcid: 7332985
doi: 10.15252/embr.202050287
Cheng, C.-F., Ku, H.-C. & Lin, H. PGC-1α as a pivotal factor in lipid and metabolic regulation. Int. J. Mol. Sci. 19, 3447 (2018).
pmcid: 6274980
doi: 10.3390/ijms19113447
Lee, J. H. et al. The role of adipose tissue mitochondria: regulation of mitochondrial function for the treatment of metabolic diseases. Int. J. Mol. Sci. 20, 4924 (2019).
pmcid: 6801758
doi: 10.3390/ijms20194924
Heinonen, S., Jokinen, R., Rissanen, A. & Pietilainen, K. H. White adipose tissue mitochondrial metabolism in health and in obesity. Obes. Rev. 21, e12958 (2020).
pubmed: 31777187
doi: 10.1111/obr.12958
Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885.e866 (2018).
pubmed: 29617645
pmcid: 5969538
doi: 10.1016/j.cmet.2018.03.003
Acin-Perez, R. et al. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J. 39, e104073 (2020).
pubmed: 32432379
pmcid: 7327496
doi: 10.15252/embj.2019104073
Wang, T. et al. Respiration in adipocytes is inhibited by reactive oxygen species. Obesity 18, 1493–1502 (2010).
pubmed: 20035277
doi: 10.1038/oby.2009.456
St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397–408 (2006).
pubmed: 17055439
doi: 10.1016/j.cell.2006.09.024
Dogan, S. A. et al. Perturbed redox signaling exacerbates a mitochondrial myopathy. Cell Metab. 28, 764–775 e765 (2018).
pubmed: 30122554
pmcid: 6224544
doi: 10.1016/j.cmet.2018.07.012
Moreno-Loshuertos, R. et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat. Genet. 38, 1261–1268 (2006).
pubmed: 17013393
doi: 10.1038/ng1897
Swierczek, M. et al. An electronic bus bar lies in the core of cytochrome bc1. Science 329, 451–454 (2010).
pubmed: 20651150
pmcid: 4073802
doi: 10.1126/science.1190899
Tormos, K. V. et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537–544 (2011).
pubmed: 21982713
pmcid: 3190168
doi: 10.1016/j.cmet.2011.08.007
Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A. & Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529–539 (2008).
pubmed: 19026783
doi: 10.1016/j.molcel.2008.10.021
Acı́n-Pérez, R. et al. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol. Cell 13, 805–815 (2004).
pubmed: 15053874
pmcid: 3164363
doi: 10.1016/S1097-2765(04)00124-8
Maranzana, E., Barbero, G., Falasca, A. I., Lenaz, G. & Genova, M. L. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid. Redox Signal 19, 1469–1480 (2013).
pubmed: 23581604
pmcid: 3797460
doi: 10.1089/ars.2012.4845
Nookaew, I. et al. Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men. J. Clin. Endocrinol. Metab. 98, E370–E378 (2012).
pubmed: 23264395
pmcid: 3633773
doi: 10.1210/jc.2012-2764
Hirst, J. Mitochondrial complex I. Annu. Rev. Biochem. 82, 551–575 (2013).
pubmed: 23527692
doi: 10.1146/annurev-biochem-070511-103700
Fiedorczuk, K. et al. Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406–410 (2016).
pubmed: 27595392
pmcid: 5164932
doi: 10.1038/nature19794
Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).
pubmed: 27509854
pmcid: 5027920
doi: 10.1038/nature19095
Karamanlidis, G. et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 18, 239–250 (2013).
pubmed: 23931755
pmcid: 3779647
doi: 10.1016/j.cmet.2013.07.002
Urra, F. A., Munoz, F., Lovy, A. & Cardenas, C. The mitochondrial complex(i)ty of cancer. Front Oncol. 7, 118 (2017).
pubmed: 28642839
pmcid: 5462917
doi: 10.3389/fonc.2017.00118
Papa, S. & De Rasmo, D. Complex I deficiencies in neurological disorders. Trends Mol. Med. 19, 61–69 (2013).
pubmed: 23265841
doi: 10.1016/j.molmed.2012.11.005
Dröse, S. & Brandt, U. Advances in experimental medicine and biology. Adv. Exp. Med Biol. 748, 145–169 (2012).
pubmed: 22729857
doi: 10.1007/978-1-4614-3573-0_6
Lazarou, M., McKenzie, M., Ohtake, A., Thorburn, D. R. & Ryan, M. T. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol. Cell. Biol. 27, 4228–4237 (2007).
pubmed: 17438127
pmcid: 1900046
doi: 10.1128/MCB.00074-07
Szczepanowska, K. et al. A salvage pathway maintains highly functional respiratory complex I. Nat. Commun. 11, 1643 (2020).
pubmed: 32242014
pmcid: 7118099
doi: 10.1038/s41467-020-15467-7
Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).
pubmed: 27383793
doi: 10.1038/nature18618
Boudina, S. & Graham, T. E. Mitochondrial function/dysfunction in white adipose tissue. Exp. Physiol. 99, 1168–1178 (2014).
pubmed: 25128326
doi: 10.1113/expphysiol.2014.081414
Krawczyk, S. A., Haller, J. F., Ferrante, T., Zoeller, R. A. & Corkey, B. E. Reactive oxygen species facilitate translocation of hormone sensitive lipase to the lipid droplet during lipolysis in human differentiated adipocytes. PLoS ONE 7, e34904 (2012).
pubmed: 22493722
pmcid: 3321042
doi: 10.1371/journal.pone.0034904
Masschelin, P. M., Cox, A. R., Chernis, N. & Hartig, S. M. The impact of oxidative stress on adipose tissue energy balance. Front Physiol. 10, 1638 (2019).
pubmed: 32038305
doi: 10.3389/fphys.2019.01638
Acín-Pérez, R. et al. Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nat. Metab. 2, 974–988 (2020).
pubmed: 32943786
pmcid: 8225238
doi: 10.1038/s42255-020-00273-8
Reaven, G. M. Banting Lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).
pubmed: 3056758
doi: 10.2337/diab.37.12.1595
Lusis, A. J., Attie, A. D. & Reue, K. Metabolic syndrome: from epidemiology to systems biology. Nat. Rev. Genet. 9, 819–830 (2008).
pubmed: 18852695
pmcid: 2829312
doi: 10.1038/nrg2468
Gagnon, D. & Kenny, G. P. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J. Physiol. 590, 5963–5973 (2012).
pubmed: 23045336
pmcid: 3530110
doi: 10.1113/jphysiol.2012.240739
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
pubmed: 22257669
pmcid: 3307112
doi: 10.1093/bioinformatics/bts034
Lippert, C. et al. FaST linear mixed models for genome-wide association studies. Nat. Methods 8, 833–835 (2011).
pubmed: 21892150
doi: 10.1038/nmeth.1681
Vergnes, L., Chin, R., Young, S. G. & Reue, K. Heart-type fatty acid-binding protein is essential for efficient brown adipose tissue fatty acid oxidation and cold tolerance. J. Biol. Chem. 286, 380–390 (2011).
pubmed: 21044951
doi: 10.1074/jbc.M110.184754
Rooney, J. P. et al. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol. Biol. 1241, 23–38 (2015).
pubmed: 25308485
pmcid: 4312664
doi: 10.1007/978-1-4939-1875-1_3
Venegas, V. & Halberg, M. C. Measurement of mitochondrial DNA copy number. Methods Mol. Biol. 837, 327–335 (2012).
pubmed: 22215558
doi: 10.1007/978-1-61779-504-6_22
Keane, T. M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).
pubmed: 21921910
pmcid: 3276836
doi: 10.1038/nature10413
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522
pmcid: 3137218
doi: 10.1093/bioinformatics/btr330
Link, V. M., Romanoski, C. E., Metzler, D. & Glass, C. K. MMARGE: Motif Mutation Analysis for Regulatory Genomic Elements. Nucleic Acids Res. 46, 7006–7021 (2018).
pubmed: 29893919
pmcid: 6101580
doi: 10.1093/nar/gky491
O’Neill, S. M. et al. Targeting adipose tissue via systemic gene therapy. Gene Ther. 21, 653–661 (2014).
pubmed: 24830434
pmcid: 4342115
doi: 10.1038/gt.2014.38
Vandesompele, J. et al. Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034 (2002).
pubmed: 12184808
pmcid: 126239
doi: 10.1186/gb-2002-3-7-research0034
Rogers, G. W. et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS ONE 6, e21746 (2011).
pubmed: 21799747
pmcid: 3143121
doi: 10.1371/journal.pone.0021746
Brand, M. D. & Nicholls, D. G. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312 (2011).
pubmed: 21726199
doi: 10.1042/BJ20110162
Affourtit, C., Jastroch, M. & Brand, M. D. Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species. Free Radic. Biol. Med. 50, 609–616 (2011).
pubmed: 21172424
pmcid: 3036803
doi: 10.1016/j.freeradbiomed.2010.12.020
Osto, C. et al. Measuring mitochondrial respiration in previously frozen biological samples. Curr. Protoc. Cell Biol. 89, e116 (2020).
pubmed: 33320426
doi: 10.1002/cpcb.116
Garaude, J. et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat. Immunol. 17, 1037–1045 (2016).
pubmed: 27348412
pmcid: 4994870
doi: 10.1038/ni.3509
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559 (2008).
doi: 10.1186/1471-2105-9-559