Sensitive identification of neoantigens and cognate TCRs in human solid tumors.
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
19
01
2021
accepted:
20
08
2021
pubmed:
17
11
2021
medline:
20
5
2022
entrez:
16
11
2021
Statut:
ppublish
Résumé
The identification of patient-specific tumor antigens is complicated by the low frequency of T cells specific for each tumor antigen. Here we describe NeoScreen, a method that enables the sensitive identification of rare tumor (neo)antigens and of cognate T cell receptors (TCRs) expressed by tumor-infiltrating lymphocytes. T cells transduced with tumor antigen-specific TCRs identified by NeoScreen mediate regression of established tumors in patient-derived xenograft mice.
Identifiants
pubmed: 34782741
doi: 10.1038/s41587-021-01072-6
pii: 10.1038/s41587-021-01072-6
pmc: PMC9110298
doi:
Substances chimiques
Antigens, Neoplasm
0
Receptors, Antigen, T-Cell
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
656-660Informations de copyright
© 2021. The Author(s).
Références
Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4
doi: 10.1126/science.1251102
Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).
pubmed: 28678784
doi: 10.1038/nature23003
Prickett, T. D. et al. Durable complete response from metastatic melanoma after transfer of autologous T cells recognizing 10 mutated tumor antigens. Cancer Immunol. Res. 4, 669–679 (2016).
pubmed: 27312342
pmcid: 4970903
doi: 10.1158/2326-6066.CIR-15-0215
Chen, F. et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J. Clin. Invest. 129, 2056–2070 (2019).
pubmed: 30835255
pmcid: 6486339
doi: 10.1172/JCI99538
Carreno, B. M. et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).
pubmed: 25837513
pmcid: 4549796
doi: 10.1126/science.aaa3828
Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).
pubmed: 23377668
pmcid: 3581823
doi: 10.1097/CJI.0b013e3182829903
Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).
pubmed: 25538264
doi: 10.1158/1078-0432.CCR-14-2708
Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).
pubmed: 28541315
pmcid: 5632949
doi: 10.1038/nature22395
Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).
pubmed: 25838374
pmcid: 6295668
doi: 10.1126/science.aaa4967
Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).
pubmed: 16946036
pmcid: 2267026
doi: 10.1126/science.1129003
Linnemann, C. et al. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat. Med. 19, 1534–1541 (2013).
pubmed: 24121928
doi: 10.1038/nm.3359
Parkhurst, M. et al. Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin. Cancer Res. 23, 2491–2505 (2017).
pubmed: 27827318
doi: 10.1158/1078-0432.CCR-16-2680
Pasetto, A. et al. Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol. Res. 4, 734–743 (2016).
pubmed: 27354337
pmcid: 5010958
doi: 10.1158/2326-6066.CIR-16-0001
Danilova, L. et al. The mutation-associated neoantigen functional expansion of specific T cells (MANAFEST) assay: a sensitive platform for monitoring antitumor immunity. Cancer Immunol. Res. 6, 888–899 (2018).
pubmed: 29895573
pmcid: 6072595
doi: 10.1158/2326-6066.CIR-18-0129
Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8
pubmed: 29545564
pmcid: 5854609
doi: 10.1038/s41467-018-03301-0
Kalaora, S. et al. Combined analysis of antigen presentation and T cell recognition reveals restricted immune responses in melanoma. Cancer Discov. 8, 1366–1375 (2018).
pubmed: 30209080
pmcid: 6453138
doi: 10.1158/2159-8290.CD-17-1418
Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013).
pubmed: 23644516
pmcid: 3757932
doi: 10.1038/nm.3161
Wick, D. A. et al. Surveillance of the tumor mutanome by T cells during progression from primary to recurrent ovarian cancer. Clin. Cancer Res. 20, 1125–1134 (2014).
pubmed: 24323902
doi: 10.1158/1078-0432.CCR-13-2147
Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4
pubmed: 25531942
doi: 10.1038/nm.3773
Lu, Y.-C. et al. An efficient single-cell RNA-seq approach to identify neoantigen-specific T cell receptors. Mol. Ther. 26, 379–389 (2018).
pubmed: 29174843
doi: 10.1016/j.ymthe.2017.10.018
Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids.Cell 174, 1586–1598 (2018).
pubmed: 30100188
pmcid: 6558289
doi: 10.1016/j.cell.2018.07.009
Cohen, C. J. et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J. Clin. Invest. 125, 3981–3991 (2015).
pubmed: 26389673
pmcid: 4607110
doi: 10.1172/JCI82416
Strønen, E. et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 352, 1337–1340 (2016).
pubmed: 27198675
doi: 10.1126/science.aaf2288
Cafri, G. et al. Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nat. Commun. 10, 449 (2019).
pubmed: 30683863
pmcid: 6347629
doi: 10.1038/s41467-019-08304-z
Malekzadeh, P. et al. Antigen experienced T cells from peripheral blood recognize p53 neoantigens. Clin. Cancer Res. 26, 1267–1276 (2020).
pubmed: 31996390
pmcid: 7424598
doi: 10.1158/1078-0432.CCR-19-1874
Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).
pubmed: 26901407
pmcid: 7446107
doi: 10.1038/nm.4051
Simoni, Y. et al. Bystander CD8
pubmed: 29769722
doi: 10.1038/s41586-018-0130-2
Poschke, I. C. et al. The outcome of ex vivo TIL expansion is highly influenced by spatial heterogeneity of the tumor T-cell repertoire and differences in intrinsic in vitro growth capacity between T-cell clones. Clin. Cancer Res. 26, 4289–4301 (2020).
pubmed: 32303540
doi: 10.1158/1078-0432.CCR-19-3845
Wennhold, K., Shimabukuro-Vornhagen, A. & Von Bergwelt-Baildon, M. B cell-based cancer immunotherapy. Transfus. Med. Hemother. 46, 36–46 (2019).
pubmed: 31244580
pmcid: 6558332
doi: 10.1159/000496166
Lee, J., Dollins, C. M., Boczkowski, D., Sullenger, B. A. & Nair, S. Activated B cells modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are comparable to mature dendritic cells in inducing in vitro antigen-specific T-cell responses. Immunology 125, 229–240 (2008).
pubmed: 18393968
pmcid: 2561128
doi: 10.1111/j.1365-2567.2008.02833.x
Subudhi, S. K. et al. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. Sci. Transl. Med. 12, eaaz3577 (2020).
pubmed: 32238575
doi: 10.1126/scitranslmed.aaz3577
Zacharakis, N. et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 24, 724–730 (2018).
pubmed: 29867227
pmcid: 6348479
doi: 10.1038/s41591-018-0040-8
Malekzadeh, P. et al. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Invest. 129, 1109–1114 (2019).
pubmed: 30714987
doi: 10.1172/JCI123791
Jeperson, H. et al. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat. Commun. 8, 707 (2017).
doi: 10.1038/s41467-017-00786-z
Cachot, A. et al. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci. Adv. 7, eabe3348 (2021).
Gannon, P. O. et al. Development of an optimized closed and semi-automatic protocol for Good Manufacturing Practice manufacturing of tumor-infiltrating lymphocytes in a hospital environment. Cytotherapy 22, 780–791 (2020).
pubmed: 33069566
doi: 10.1016/j.jcyt.2020.07.011
Bassani-Sternberg, M. et al. A phase Ib study of the combination of personalized autologous dendritic cell vaccine, aspirin, and standard of care adjuvant chemotherapy followed by nivolumab for resected pancreatic adenocarcinoma-a proof of antigen discovery feasibility in three patients. Front. Immunol. 10, 1832 (2019).
pubmed: 31440238
pmcid: 6694698
doi: 10.3389/fimmu.2019.01832
der Auwera, G. A. et al. From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).
Nielsen, M. & Andreatta, M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8, 33 (2016).
pubmed: 27029192
pmcid: 4812631
doi: 10.1186/s13073-016-0288-x
Lundegaard, C. et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 36, W509–W512 (2008).
pubmed: 18463140
pmcid: 2447772
doi: 10.1093/nar/gkn202
Schmidt, J. et al. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Rep. Med. 2, 100194 (2021).
Gfeller, D. et al. The length distribution and multiple specificity of naturally presented HLA-I ligands. J. Immunol. 201, 3705–3716 (2018).
pubmed: 30429286
doi: 10.4049/jimmunol.1800914
Bassani-Sternberg, M. et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput. Biol. 13, e1005725 (2017).
pubmed: 28832583
pmcid: 5584980
doi: 10.1371/journal.pcbi.1005725
Müller, M., Gfeller, D., Coukos, G. & Bassani-Sternberg, M. ‘Hotspots’ of antigen presentation revealed by human leukocyte antigen ligandomics for neoantigen prioritization. Front. Immunol. 8, 1367 (2017).
pubmed: 29104575
pmcid: 5654951
doi: 10.3389/fimmu.2017.01367
Chong, C. et al. High-throughput and sensitive immunopeptidomics platform reveals profound interferonγ-mediated remodeling of the human leukocyte antigen (HLA) ligandome. Mol. Cell. Proteomics 17, 533–548 (2018).
pubmed: 29242379
doi: 10.1074/mcp.TIR117.000383
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910
doi: 10.1038/nbt.1511
Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).
pubmed: 27869121
pmcid: 5121339
doi: 10.1038/ncomms13404
Holtkamp, S. et al. Modification of antigen encoding RNA increases stability, translational efficacy and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4018 (2006).
pubmed: 16940422
doi: 10.1182/blood-2006-04-015024
Kreiter, S. et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J. Immunol. 180, 309–318 (2007).
doi: 10.4049/jimmunol.180.1.309
Seliktar-Ofir, S. et al. Selection of shared and neoantigen-reactive T cells for adoptive cell therapy based on CD137 separation. Front. Immunol. 8, 1211 (2017).
pubmed: 29067023
pmcid: 5641376
doi: 10.3389/fimmu.2017.01211
Jones, S. et al. Lentiviral vector design for optimal T cell receptor gene expression in the transduction of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Hum. Gene Ther. 20, 630–640 (2009).
pubmed: 19265475
pmcid: 2828626
doi: 10.1089/hum.2008.048
Giordano-Attianese, G. et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat. Biotechnol. 38, 426–432 (2020).
pubmed: 32015549
doi: 10.1038/s41587-019-0403-9
Giudicelli, V., Chaume, D. & Lefranc, M. P. IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 33, 256–261 (2005).
doi: 10.1093/nar/gki010
Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzym. 487, 545–574 (2011).
doi: 10.1016/B978-0-12-381270-4.00019-6
Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 54, 5.6.1–5.6.37 (2016).
doi: 10.1002/cpbi.3
Rose, P. W. et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 45, D271–D281 (2017).
pubmed: 27794042
Gowthaman, R. & Pierce, B. G. TCRmodel: high resolution modeling of T cell receptors from sequence. Nucleic Acids Res. 46, W396–W401 (2018).
pubmed: 29790966
pmcid: 6030954
doi: 10.1093/nar/gky432
Mandell, D. J., Coutsias, E. A. & Kortemme, T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6, 551–552 (2009).
pubmed: 19644455
pmcid: 2847683
doi: 10.1038/nmeth0809-551
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084