Sensitive identification of neoantigens and cognate TCRs in human solid tumors.


Journal

Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648

Informations de publication

Date de publication:
05 2022
Historique:
received: 19 01 2021
accepted: 20 08 2021
pubmed: 17 11 2021
medline: 20 5 2022
entrez: 16 11 2021
Statut: ppublish

Résumé

The identification of patient-specific tumor antigens is complicated by the low frequency of T cells specific for each tumor antigen. Here we describe NeoScreen, a method that enables the sensitive identification of rare tumor (neo)antigens and of cognate T cell receptors (TCRs) expressed by tumor-infiltrating lymphocytes. T cells transduced with tumor antigen-specific TCRs identified by NeoScreen mediate regression of established tumors in patient-derived xenograft mice.

Identifiants

pubmed: 34782741
doi: 10.1038/s41587-021-01072-6
pii: 10.1038/s41587-021-01072-6
pmc: PMC9110298
doi:

Substances chimiques

Antigens, Neoplasm 0
Receptors, Antigen, T-Cell 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

656-660

Informations de copyright

© 2021. The Author(s).

Références

Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4
doi: 10.1126/science.1251102
Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).
pubmed: 28678784 doi: 10.1038/nature23003
Prickett, T. D. et al. Durable complete response from metastatic melanoma after transfer of autologous T cells recognizing 10 mutated tumor antigens. Cancer Immunol. Res. 4, 669–679 (2016).
pubmed: 27312342 pmcid: 4970903 doi: 10.1158/2326-6066.CIR-15-0215
Chen, F. et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J. Clin. Invest. 129, 2056–2070 (2019).
pubmed: 30835255 pmcid: 6486339 doi: 10.1172/JCI99538
Carreno, B. M. et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).
pubmed: 25837513 pmcid: 4549796 doi: 10.1126/science.aaa3828
Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).
pubmed: 23377668 pmcid: 3581823 doi: 10.1097/CJI.0b013e3182829903
Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).
pubmed: 25538264 doi: 10.1158/1078-0432.CCR-14-2708
Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).
pubmed: 28541315 pmcid: 5632949 doi: 10.1038/nature22395
Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).
pubmed: 25838374 pmcid: 6295668 doi: 10.1126/science.aaa4967
Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).
pubmed: 16946036 pmcid: 2267026 doi: 10.1126/science.1129003
Linnemann, C. et al. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat. Med. 19, 1534–1541 (2013).
pubmed: 24121928 doi: 10.1038/nm.3359
Parkhurst, M. et al. Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin. Cancer Res. 23, 2491–2505 (2017).
pubmed: 27827318 doi: 10.1158/1078-0432.CCR-16-2680
Pasetto, A. et al. Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol. Res. 4, 734–743 (2016).
pubmed: 27354337 pmcid: 5010958 doi: 10.1158/2326-6066.CIR-16-0001
Danilova, L. et al. The mutation-associated neoantigen functional expansion of specific T cells (MANAFEST) assay: a sensitive platform for monitoring antitumor immunity. Cancer Immunol. Res. 6, 888–899 (2018).
pubmed: 29895573 pmcid: 6072595 doi: 10.1158/2326-6066.CIR-18-0129
Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8
pubmed: 29545564 pmcid: 5854609 doi: 10.1038/s41467-018-03301-0
Kalaora, S. et al. Combined analysis of antigen presentation and T cell recognition reveals restricted immune responses in melanoma. Cancer Discov. 8, 1366–1375 (2018).
pubmed: 30209080 pmcid: 6453138 doi: 10.1158/2159-8290.CD-17-1418
Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013).
pubmed: 23644516 pmcid: 3757932 doi: 10.1038/nm.3161
Wick, D. A. et al. Surveillance of the tumor mutanome by T cells during progression from primary to recurrent ovarian cancer. Clin. Cancer Res. 20, 1125–1134 (2014).
pubmed: 24323902 doi: 10.1158/1078-0432.CCR-13-2147
Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4
pubmed: 25531942 doi: 10.1038/nm.3773
Lu, Y.-C. et al. An efficient single-cell RNA-seq approach to identify neoantigen-specific T cell receptors. Mol. Ther. 26, 379–389 (2018).
pubmed: 29174843 doi: 10.1016/j.ymthe.2017.10.018
Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids.Cell 174, 1586–1598 (2018).
pubmed: 30100188 pmcid: 6558289 doi: 10.1016/j.cell.2018.07.009
Cohen, C. J. et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J. Clin. Invest. 125, 3981–3991 (2015).
pubmed: 26389673 pmcid: 4607110 doi: 10.1172/JCI82416
Strønen, E. et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 352, 1337–1340 (2016).
pubmed: 27198675 doi: 10.1126/science.aaf2288
Cafri, G. et al. Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nat. Commun. 10, 449 (2019).
pubmed: 30683863 pmcid: 6347629 doi: 10.1038/s41467-019-08304-z
Malekzadeh, P. et al. Antigen experienced T cells from peripheral blood recognize p53 neoantigens. Clin. Cancer Res. 26, 1267–1276 (2020).
pubmed: 31996390 pmcid: 7424598 doi: 10.1158/1078-0432.CCR-19-1874
Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).
pubmed: 26901407 pmcid: 7446107 doi: 10.1038/nm.4051
Simoni, Y. et al. Bystander CD8
pubmed: 29769722 doi: 10.1038/s41586-018-0130-2
Poschke, I. C. et al. The outcome of ex vivo TIL expansion is highly influenced by spatial heterogeneity of the tumor T-cell repertoire and differences in intrinsic in vitro growth capacity between T-cell clones. Clin. Cancer Res. 26, 4289–4301 (2020).
pubmed: 32303540 doi: 10.1158/1078-0432.CCR-19-3845
Wennhold, K., Shimabukuro-Vornhagen, A. & Von Bergwelt-Baildon, M. B cell-based cancer immunotherapy. Transfus. Med. Hemother. 46, 36–46 (2019).
pubmed: 31244580 pmcid: 6558332 doi: 10.1159/000496166
Lee, J., Dollins, C. M., Boczkowski, D., Sullenger, B. A. & Nair, S. Activated B cells modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are comparable to mature dendritic cells in inducing in vitro antigen-specific T-cell responses. Immunology 125, 229–240 (2008).
pubmed: 18393968 pmcid: 2561128 doi: 10.1111/j.1365-2567.2008.02833.x
Subudhi, S. K. et al. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. Sci. Transl. Med. 12, eaaz3577 (2020).
pubmed: 32238575 doi: 10.1126/scitranslmed.aaz3577
Zacharakis, N. et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 24, 724–730 (2018).
pubmed: 29867227 pmcid: 6348479 doi: 10.1038/s41591-018-0040-8
Malekzadeh, P. et al. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Invest. 129, 1109–1114 (2019).
pubmed: 30714987 doi: 10.1172/JCI123791
Jeperson, H. et al. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat. Commun. 8, 707 (2017).
doi: 10.1038/s41467-017-00786-z
Cachot, A. et al. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci. Adv. 7, eabe3348 (2021).
Gannon, P. O. et al. Development of an optimized closed and semi-automatic protocol for Good Manufacturing Practice manufacturing of tumor-infiltrating lymphocytes in a hospital environment. Cytotherapy 22, 780–791 (2020).
pubmed: 33069566 doi: 10.1016/j.jcyt.2020.07.011
Bassani-Sternberg, M. et al. A phase Ib study of the combination of personalized autologous dendritic cell vaccine, aspirin, and standard of care adjuvant chemotherapy followed by nivolumab for resected pancreatic adenocarcinoma-a proof of antigen discovery feasibility in three patients. Front. Immunol. 10, 1832 (2019).
pubmed: 31440238 pmcid: 6694698 doi: 10.3389/fimmu.2019.01832
der Auwera, G. A. et al. From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).
Nielsen, M. & Andreatta, M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8, 33 (2016).
pubmed: 27029192 pmcid: 4812631 doi: 10.1186/s13073-016-0288-x
Lundegaard, C. et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 36, W509–W512 (2008).
pubmed: 18463140 pmcid: 2447772 doi: 10.1093/nar/gkn202
Schmidt, J. et al. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Rep. Med. 2, 100194 (2021).
Gfeller, D. et al. The length distribution and multiple specificity of naturally presented HLA-I ligands. J. Immunol. 201, 3705–3716 (2018).
pubmed: 30429286 doi: 10.4049/jimmunol.1800914
Bassani-Sternberg, M. et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput. Biol. 13, e1005725 (2017).
pubmed: 28832583 pmcid: 5584980 doi: 10.1371/journal.pcbi.1005725
Müller, M., Gfeller, D., Coukos, G. & Bassani-Sternberg, M. ‘Hotspots’ of antigen presentation revealed by human leukocyte antigen ligandomics for neoantigen prioritization. Front. Immunol. 8, 1367 (2017).
pubmed: 29104575 pmcid: 5654951 doi: 10.3389/fimmu.2017.01367
Chong, C. et al. High-throughput and sensitive immunopeptidomics platform reveals profound interferonγ-mediated remodeling of the human leukocyte antigen (HLA) ligandome. Mol. Cell. Proteomics 17, 533–548 (2018).
pubmed: 29242379 doi: 10.1074/mcp.TIR117.000383
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910 doi: 10.1038/nbt.1511
Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).
pubmed: 27869121 pmcid: 5121339 doi: 10.1038/ncomms13404
Holtkamp, S. et al. Modification of antigen encoding RNA increases stability, translational efficacy and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4018 (2006).
pubmed: 16940422 doi: 10.1182/blood-2006-04-015024
Kreiter, S. et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J. Immunol. 180, 309–318 (2007).
doi: 10.4049/jimmunol.180.1.309
Seliktar-Ofir, S. et al. Selection of shared and neoantigen-reactive T cells for adoptive cell therapy based on CD137 separation. Front. Immunol. 8, 1211 (2017).
pubmed: 29067023 pmcid: 5641376 doi: 10.3389/fimmu.2017.01211
Jones, S. et al. Lentiviral vector design for optimal T cell receptor gene expression in the transduction of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Hum. Gene Ther. 20, 630–640 (2009).
pubmed: 19265475 pmcid: 2828626 doi: 10.1089/hum.2008.048
Giordano-Attianese, G. et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat. Biotechnol. 38, 426–432 (2020).
pubmed: 32015549 doi: 10.1038/s41587-019-0403-9
Giudicelli, V., Chaume, D. & Lefranc, M. P. IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 33, 256–261 (2005).
doi: 10.1093/nar/gki010
Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzym. 487, 545–574 (2011).
doi: 10.1016/B978-0-12-381270-4.00019-6
Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 54, 5.6.1–5.6.37 (2016).
doi: 10.1002/cpbi.3
Rose, P. W. et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 45, D271–D281 (2017).
pubmed: 27794042
Gowthaman, R. & Pierce, B. G. TCRmodel: high resolution modeling of T cell receptors from sequence. Nucleic Acids Res. 46, W396–W401 (2018).
pubmed: 29790966 pmcid: 6030954 doi: 10.1093/nar/gky432
Mandell, D. J., Coutsias, E. A. & Kortemme, T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6, 551–552 (2009).
pubmed: 19644455 pmcid: 2847683 doi: 10.1038/nmeth0809-551
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084

Auteurs

Marion Arnaud (M)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Johanna Chiffelle (J)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Raphael Genolet (R)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Blanca Navarro Rodrigo (B)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Marta A S Perez (MAS)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Florian Huber (F)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Morgane Magnin (M)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Tu Nguyen-Ngoc (T)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Philippe Guillaume (P)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Petra Baumgaertner (P)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Chloe Chong (C)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Brian J Stevenson (BJ)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.

David Gfeller (D)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Melita Irving (M)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Daniel E Speiser (DE)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Julien Schmidt (J)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Vincent Zoete (V)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Lana E Kandalaft (LE)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Michal Bassani-Sternberg (M)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Sara Bobisse (S)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

George Coukos (G)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland. george.coukos@chuv.ch.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. george.coukos@chuv.ch.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland. george.coukos@chuv.ch.

Alexandre Harari (A)

Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Lausanne, Switzerland. alexandre.harari@chuv.ch.
Centre des Thérapies Expérimentales (CTE), Department of Oncology - Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. alexandre.harari@chuv.ch.
Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland. alexandre.harari@chuv.ch.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH