Technical note: Providing proton fields down to the few-MeV level at clinical pencil beam scanning facilities for radiobiological experiments.
Monte Carlo
energy distributions
high LET
proton therapy
radiobiology
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
revised:
03
11
2021
received:
23
08
2021
accepted:
18
11
2021
pubmed:
3
12
2021
medline:
18
1
2022
entrez:
2
12
2021
Statut:
ppublish
Résumé
The adequate performance of radiobiological experiments using clinical proton beams typically requires substantial preparations to provide the appropriate setup for specific experiments. Providing radiobiologically interesting low-energy protons is a particular challenge, due to various physical effects that become more pronounced with larger absorber thickness and smaller proton energy. This work demonstrates the generation of decelerated low-energy protons from a clinical proton beam. Monte Carlo simulations of proton energy spectra were performed for energy absorbers with varying thicknesses to reduce the energy of the clinical proton beam down to the few-MeV level corresponding to The resulting energy spectra from Monte Carlo simulations indicate an optimal absorber thickness for providing low-energy protons with maximum efficiency of proton fluence at an user-requested energy range for experiments. For instance, providing energies lower than 5 MeV, an energy spectrum with a relative total efficiency of This work provides a method for generating all clinically and radiobiologically relevant energies - especially down to the few-MeV level - at one clinical facility with pencil beam scanning. Thereby, it enables radiobiological experiments under environmentally uniform conditions.
Substances chimiques
Protons
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
666-674Subventions
Organisme : Mercator Research Center Ruhr
ID : St-2019-0007
Organisme : Deutsche Forschungsgemeinschaft
ID : 401832363
Informations de copyright
© 2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Références
Paganetti H, van Luijk P. Biological considerations when comparing proton therapy with photon therapy. Semin Radiat Oncol. 2013;23:77-87.
Behrends C, Haussmann J, Kramer P-H, et al. Model-based comparison of organ at risk protection between VMAT and robustly optimised IMPT plans. Zeitschrift für Medizinische Physik. 2021;31:5-15.
Goodhead DT, Belli M, Mill AJ, et al. Direct comparison between protons and alpha-particles of the same lET: I. Irradiation methods and inactivation of asynchronous V79, HeLa and C3H 10T½ cells. Int J Radiat Biol. 1992;61:611-624.
Schneider T, Patriarca A, Prezado Y. Improving the dose distributions in minibeam radiation therapy: helium ions vs protons. Med Phys. 2019;46:3640-3648.
Weber U, Kraft G. Comparison of carbon ions versus protons. Cancer J. 2009;15:325-332.
Beyreuther E, Brüchner K, Krause M, Schmidt M, Szabo R, Pawelke J. An optimized small animal tumour model for experimentation with low energy protons. PLoS One. 2017;12.
Hanton F, Chaudhary P, Doria D, et al. DNA DSB repair dynamics following irradiation with laser-driven protons at ultra-high dose rates. Sci Rep. 2019;9.
Raschke S, Spickermann S, Toncian T, et al. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams. Sci Rep. 2016;6.
Lühr A, von Neubeck C, Krause M, Troost EG. Relative biological effectiveness in proton beam therapy - current knowledge and future challenges. Clin Transl Radiat Oncol. 2018;9:35-41.
Dahle TJ, Rykkelid AM, Stokkevåg CH, et al. Monte Carlo simulations of a low energy proton beamline for radiobiological experiments. Acta Oncol (Madr). 2017;56:779-786.
Chaudhary P, Marshall TI, Perozziello FM, et al. Relative biological effectiveness variation along monoenergetic and modulated bragg peaks of a 62-MeV therapeutic proton beam: a preclinical assessment. Int J Radiat Oncol Biol Phys. 2014;90:27-35.
Guan F, Bronk L, Titt U, et al. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Sci Rep. 2015;5.
Patel D, Bronk L, Guan F, et al. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Med Phys. 2017;44:6061-6073.
Gerlach S, Pinto M, Kurichiyanil N, et al. Beam characterization and feasibility study for a small animal irradiation platform at clinical proton therapy facilities. Phys Med Biol. 2020;65:245045.
Ehlert J, Piel M, Boege F, et al. An experimental platform for studying the radiation effects of laser accelerated protons on mammalian cells. AIP Adv. 2021;11:065208.
Cerchez M, Prasad R, Aurand B, et al. ARCTURUS laser: a versatile high-contrast, high-power multi-beam laser system. High Power Laser Sci Eng. 2019;7.
Bichsel H, Hiraoka T. Energy spectra and depth-dose curves for 70 MeV protons. Int J Quantum Chem Quantum Chem Symp. 1989;23:565-574.
Tschalär C, Maccabee HD. Energy-straggling measurements of heavy charged particles in thick absorbers. Phys Rev B. 1970;1.
Lewis HW. Range straggling of a nonrelativistic charged particle. Phys Rev. 1952;85.
RaySearch Laboratories. RAYSTATION 7 Reference Manual. Schweden: RaySearch Laboratories AB; 2017.
Tschalär C. Straggling distributions of large energy losses. Nucl Instrum Methods. 1968;61:141-156.
Tschalär C. Straggling distributions of extremely large energy losses. Nucl Instrum Methods. 1968;64:237-243.
Kern A, Bäumer C, Kröninger K, et al. Determination of surface dose in pencil beam scanning proton therapy. Med Phys. 2020;47:2277-2288.
Bortfeld T. An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys. 1997;24:2024-2033.
Perl J, Shin J, Schümann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39:6818-6837.
Verbeek N, Wulff J, Bäumer C, Smyczek S, Timmermann B, Brualla L. Single pencil beam benchmark of a module for Monte Carlo simulation of proton transport in the PENELOPE code. Med Phys. 2020;48:456-476.
Clasie B, Depauw N, Fransen M, et al. Golden beam data for proton pencil-beam scanning. Phys Med Biol. 2012;57:1147-1158.
Grassberger C, Lomax A, Paganetti H. Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients. Phys Med Biol. 2014;60:633-645.
Verbeek N, Wulff J, Janson M, et al. Experiments and Monte Carlo simulations on multiple Coulomb scattering of protons. Med Phys. 2021;48:3186-3199.
International Commission on Radiation Units and Measurements. Key data for ionizing-radiation dosimetry: measurement standards and applications (report 90). J ICRU. 2014;14:NP.2-NP.
International Commission on Radiation Units and Measurements. Stopping Powers and Ranges for Protons and Alpha Particles (Report 49). J ICRU. 1993;os25:NP-NP.
Berger M, Coursey J, Zucker M & Chang J. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3). 2005. 2021. [Online] Available: http://physics.nist.gov/Star. National Institute of Standards and Technology, Gaithersburg, MD.
Jarlskog CZ, Paganetti H. Physics Settings for Using the Geant4 Toolkit in Proton Therapy. IEEE Trans Nucl Sci. 2008;55:1018-1025.
Granville DA, Sawakuchi GO. Comparison of linear energy transfer scoring techniques in Monte Carlo simulations of proton beams. Phys Med Biol. 2015;60:N283-N291.
Cortés-Giraldo MA, Carabe A. A critical study of different Monte Carlo scoring methods of dose average linear-energy-transfer maps calculated in voxelized geometries irradiated with clinical proton beams. Phys Med Biol. 2015;60:2645-2669.
Joint Committee for Guides in Metrology. Evaluation of measurement data - guide to the expression of uncertainty in measurement. JCGM. 2008;100.
Goodman SA, Auret FD, Meyer WE. The effect of alpha-particle and proton irradiation on the electrical and defect properties of n-GaAs. Nucl Instrum Methods Phys Res Sect B. 1994;90:349-353.
Das IJ, Paganetti H. Principles and practice of proton beam therapy, 2015. American Association of Physicists in Medicine, 2015 Summer School Proceedings, Colorado College, Colorado Springs, Colorado, June 14-18. 2015.
van Goethem MJ, van der Meer R, Reist HW, Schippers JM. Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line. Phys Med Biol. 2009;54:5831-5846.
Parodi K, Mairani A, Brons S, et al. Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility. Phys Med Biol. 2012;57:3759-3784.
Sanchez-Parcerisa D, Sanz-García I, Ibáñez P, et al. Radiochromic film dosimetry for protons up to 10 MeV with EBT2, EBT3 and unlaminated EBT3 films. Phys Med Biol. 2021;66:115006.
Mančić A, Fuchs J, Antici P, Gaillard SA, Audebert P. Absolute calibration of photostimulable image plate detectors used as (0.5-20MeV) high-energy proton detectors. Rev Sci Instrum. 2008;79:073301.
Trinkl S, Mares V, Englbrecht FS, et al. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy. Med Phys. 2017;44:1912-1920.