The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
02 12 2021
Historique:
received: 12 08 2016
accepted: 12 11 2021
entrez: 3 12 2021
pubmed: 4 12 2021
medline: 5 1 2022
Statut: epublish

Résumé

Growing evidence supports the importance of the p53 tumor suppressor in metabolism but the mechanisms underlying p53-mediated control of metabolism remain poorly understood. Here, we identify the multifunctional E4F1 protein as a key regulator of p53 metabolic functions in adipocytes. While E4F1 expression is upregulated during obesity, E4f1 inactivation in mouse adipose tissue results in a lean phenotype associated with insulin resistance and protection against induced obesity. Adipocytes lacking E4F1 activate a p53-dependent transcriptional program involved in lipid metabolism. The direct interaction between E4F1 and p53 and their co-recruitment to the Steaoryl-CoA Desaturase-1 locus play an important role to regulate monounsaturated fatty acids synthesis in adipocytes. Consistent with the role of this E4F1-p53-Steaoryl-CoA Desaturase-1 axis in adipocytes, p53 inactivation or diet complementation with oleate partly restore adiposity and improve insulin sensitivity in E4F1-deficient mice. Altogether, our findings identify a crosstalk between E4F1 and p53 in the control of lipid metabolism in adipocytes that is relevant to obesity and insulin resistance.

Identifiants

pubmed: 34857760
doi: 10.1038/s41467-021-27307-3
pii: 10.1038/s41467-021-27307-3
pmc: PMC8639890
doi:

Substances chimiques

Fatty Acids, Monounsaturated 0
Repressor Proteins 0
Tumor Suppressor Protein p53 0
Stearoyl-CoA Desaturase EC 1.14.19.1
E4F1 protein, human EC 2.3.2.27
E4f1 protein, mouse EC 2.3.2.27
Ubiquitin-Protein Ligases EC 2.3.2.27

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7037

Informations de copyright

© 2021. The Author(s).

Références

Bieging, K. T., Mello, S. S. & Attardi, L. D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14, 359–370 (2014).
pubmed: 24739573 pmcid: 4049238 doi: 10.1038/nrc3711
Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).
pubmed: 28886379 pmcid: 5743327 doi: 10.1016/j.cell.2017.08.028
Lacroix, M., Riscal, R., Arena, G., Linares, L. K. & Le Cam, L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol. Metab. 33, 2–22 (2020).
pubmed: 31685430 doi: 10.1016/j.molmet.2019.10.002
Labuschagne, C. F., Zani, F. & Vousden, K. H. Control of metabolism by p53 - cancer and beyond. BBA - Rev. Cancer 1870, 32–42 (2018).
Blandino, G., Valenti, F., Sacconi, A. & Di Agostino, S. Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in cancer disease. Semin. Cell Dev. Biol. 98, 105–117 (2020).
pubmed: 31112799 doi: 10.1016/j.semcdb.2019.05.011
Liu, J., Zhang, C., Hu, W. & Feng, Z. Tumor suppressor p53 and metabolism. J. Mol. Cell Biol. 356, 284–292 (2018).
Gnanapradeepan, K. et al. The p53 tumor suppressor in the control of metabolism and ferroptosis. Front Endocrinol. (Lausanne) 9, 427 (2018).
doi: 10.3389/fendo.2018.00124
Goldstein, I. & Rotter, V. Regulation of lipid metabolism by p53 – fighting two villains with one sword. Trends Endocrinol. Metab. 23, 567–575 (2012).
pubmed: 22819212 doi: 10.1016/j.tem.2012.06.007
Assaily, W. et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 44, 491–501 (2011).
pubmed: 22055193 doi: 10.1016/j.molcel.2011.08.038
Goldstein, I. et al. p53, a novel regulator of lipid metabolism pathways. J. Hepatol. 56, 656–662 (2012).
pubmed: 22037227 doi: 10.1016/j.jhep.2011.08.022
Sanchez-Macedo, N. et al. cdd2012168a. Cell Death Differ. 20, 659–668 (2013).
pubmed: 23412344 pmcid: 3595492 doi: 10.1038/cdd.2012.168
Yahagi, N. p53 activation in adipocytes of obese mice. J. Biol. Chem. 278, 25395–25400 (2003).
pubmed: 12734185 doi: 10.1074/jbc.M302364200
Jiang, D. et al. Analysis of p53 transactivation domain mutants reveals Acad11 as a metabolic target important for p53 pro-survival function. Cell Rep. 10, 1096–1109 (2015).
pubmed: 25704813 pmcid: 4365998 doi: 10.1016/j.celrep.2015.01.043
Kung, C.-P. et al. The P72R polymorphism of p53 predisposes to obesity and metabolic dysfunction. Cell Rep. 14, 2413–2425 (2016).
pubmed: 26947067 pmcid: 4926645 doi: 10.1016/j.celrep.2016.02.037
Lee, K. A. et al. A cellular protein, activating transcription factor, activates transcription of multiple E1A-inducible adenovirus early promoters. Proc. Natl Acad. Sci. USA 84, 8355–8359 (1987).
pubmed: 2960975 pmcid: 299541 doi: 10.1073/pnas.84.23.8355
Raychaudhuri, P., Rooney, R. & Nevins, J. R. Identification of an E1A-inducible cellular factor that interacts with regulatory sequences within the adenovirus E4 promoter. EMBO J. 6, 4073–4081 (1987).
pubmed: 2965007 pmcid: 553890 doi: 10.1002/j.1460-2075.1987.tb02753.x
Le Cam, L., Lacroix, M., Ciemerych, M. A., Sardet, C. & Sicinski, P. The E4F protein is required for mitotic progression during embryonic cell cycles. Mol. Cell Biol. 24, 6467–6475 (2004).
pubmed: 15226446 pmcid: 434264 doi: 10.1128/MCB.24.14.6467-6475.2004
Lacroix, M. et al. Transcription factor E4F1 is essential for epidermal stem cell maintenance and skin homeostasis. Proc. Natl. Acad. Sci. USA 107, 21076–21081 (2010).
pubmed: 21088222 pmcid: 3000279 doi: 10.1073/pnas.1010167107
Chagraoui, J. E4F1: a novel candidate factor for mediating BMI1 function in primitive hematopoietic cells. Genes Dev. 20, 2110–2120 (2006).
pubmed: 16882984 pmcid: 1536061 doi: 10.1101/gad.1453406
Le Cam, L. et al. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127, 775–788 (2006).
pubmed: 17110336 doi: 10.1016/j.cell.2006.09.031
Fajas, L. et al. pRB binds to and modulates the transrepressing activity of the E1A-regulated transcription factor p120E4F. Proc. Natl Acad. Sci. USA 97, 7738–7743 (2000).
pubmed: 10869426 pmcid: 16614 doi: 10.1073/pnas.130198397
Sandy, P. et al. p53 is involved in the p120E4F-mediated growth arrest. Oncogene 19, 188–199 (2000).
pubmed: 10644996 doi: 10.1038/sj.onc.1203250
Fernandes, E. R., Zhang, J. Y. & Rooney, R. J. Adenovirus E1A-regulated transcription factor p120E4F inhibits cell growth and induces the stabilization of the cdk inhibitor p21WAF1. Mol. Cell Biol. 18, 459–467 (1998).
pubmed: 9418893 pmcid: 121515 doi: 10.1128/MCB.18.1.459
Fajas, L. et al. Cyclin A is a mediator of p120E4F-dependent cell cycle arrest in G1. Mol. Cell Biol. 21, 2956–2966 (2001).
pubmed: 11283272 pmcid: 86923 doi: 10.1128/MCB.21.8.2956-2966.2001
Ahmed-Choudhury, J. et al. Transcriptional regulation of cyclin A2 by RASSF1A through the enhanced binding of p120E4F to the cyclin A2 promoter. Cancer Res. 65, 2690–2697 (2005).
pubmed: 15805267 doi: 10.1158/0008-5472.CAN-04-3593
Rodier, G. et al. The transcription factor E4F1 coordinates CHK1-dependent checkpoint and mitochondrial functions. Cell Rep. 11, 220–233 (2015).
pubmed: 25843721 doi: 10.1016/j.celrep.2015.03.024
Grote, D. et al. E4F1 is a master regulator of CHK1-mediated functions. Cell Rep. 11, 210–219 (2015).
pubmed: 25843717 doi: 10.1016/j.celrep.2015.03.019
Moison, C. et al. Zinc finger protein E4F1 cooperates with PARP-1 and BRG1 to promote DNA double-strand break repair. Proc. Natl. Acad. Sci. 118, e2019408118 (2021).
Lacroix, M. et al. E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc. Natl. Acad. Sci. 113, 10998–1003 (2016).
pubmed: 27621446 pmcid: 5047171 doi: 10.1073/pnas.1602754113
Goguet-Rubio, P. et al. E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proc. Natl. Acad. Sci. 113, 11004–11009 (2016).
pubmed: 27621431 pmcid: 5047149 doi: 10.1073/pnas.1602751113
He, W. et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl Acad. Sci. USA 100, 15712–15717 (2003).
pubmed: 14660788 pmcid: 307633 doi: 10.1073/pnas.2536828100
Savage, D. B. Mouse models of inherited lipodystrophy. Dis. Model Mech 2, 554–562 (2009).
pubmed: 19892886 doi: 10.1242/dmm.002907
Silver, D. P. & Livingston, D. M. Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol. Cell 8, 233–243 (2001).
pubmed: 11511376 doi: 10.1016/S1097-2765(01)00295-7
Sassmann, A., Offermanns, S. & Wettschureck, N. Tamoxifen-inducible Cre-mediated recombination in adipocytes. Genesis 48, 618–625 (2010).
pubmed: 20715175 doi: 10.1002/dvg.20665
Kirschner, K. et al. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53. PLoS Genet. 11, e1005053 (2015).
pubmed: 25790137 pmcid: 4366240 doi: 10.1371/journal.pgen.1005053
Schwartzenberg-Bar-Yoseph, F. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64, 2627–2633 (2004).
pubmed: 15059920 doi: 10.1158/0008-5472.CAN-03-0846
Kenzelmann Broz, D. et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27, 1016–1031 (2013).
pubmed: 23651856 pmcid: 3656320 doi: 10.1101/gad.212282.112
Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011).
pubmed: 21307849 pmcid: 3741661 doi: 10.1038/nature09787
Molchadsky, A. et al. p53 is required for brown adipogenic differentiation and has a protective role against diet-induced obesity. Cell Death Differ. 20, 774–783 (2013).
Jiang, P., Du, W., Mancuso, A., Wellen, K. E. & Yang, X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493, 689–693 (2013).
pubmed: 23334421 pmcid: 3561500 doi: 10.1038/nature11776
Houlès, T., Rodier, G., Le Cam, L., Sardet, C. & Kirsh, O. Genomics data. GDATA 5, 368–370 (2015).
Minamino, T. et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 15, 1–7 (2009).
doi: 10.1038/nm.2014
Moon, S.-H. et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell 176, 564–580.e19 (2018).
DeBose-Boyd, R. A. & Ye, J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem. Sci. 43, 358–368 (2018).
pubmed: 29500098 pmcid: 5923433 doi: 10.1016/j.tibs.2018.01.005
Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012).
pubmed: 22682249 pmcid: 3688046 doi: 10.1016/j.cell.2012.04.026
Kon, N. et al. mTOR inhibition acts as an unexpected checkpoint in p53-mediated tumor suppression. Genes Dev. 35, 59–64 (2021).
pubmed: 33303641 pmcid: 7778266 doi: 10.1101/gad.340919.120
Wang, S.-J. et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 17, 366–373 (2016).
pubmed: 27705786 pmcid: 5227654 doi: 10.1016/j.celrep.2016.09.022
Hyun, C.-K. et al. Biochemical and biophysical research communications. Biochem. Biophys. Res. Commun. 399, 480–486 (2010).
pubmed: 20655875 pmcid: 2936448 doi: 10.1016/j.bbrc.2010.07.072
Hansen, J. B. et al. Activation of peroxisome proliferator-activated receptor bypasses the function of the retinoblastoma protein in adipocyte differentiation. J. Biol. Chem. 274, 2386–2393 (1999).
pubmed: 9891007 doi: 10.1074/jbc.274.4.2386
Koc, M. et al. Biochemical and biophysical research communications. Biochem. Biophys. Res. Commun. 460, 684–690 (2015).
pubmed: 25813485 doi: 10.1016/j.bbrc.2015.03.090
Rysman, E. et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70, 8117–8126 (2010).
pubmed: 20876798 doi: 10.1158/0008-5472.CAN-09-3871

Auteurs

Matthieu Lacroix (M)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
Equipe labélisée Ligue Contre le Cancer, Paris, France.

Laetitia K Linares (LK)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
Equipe labélisée Ligue Contre le Cancer, Paris, France.

Natalia Rueda-Rincon (N)

KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium.

Katarzyna Bloch (K)

KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium.

Michela Di Michele (M)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
Equipe labélisée Ligue Contre le Cancer, Paris, France.

Carlo De Blasio (C)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
Equipe labélisée Ligue Contre le Cancer, Paris, France.

Caroline Fau (C)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
Equipe labélisée Ligue Contre le Cancer, Paris, France.

Laurie Gayte (L)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
Equipe labélisée Ligue Contre le Cancer, Paris, France.

Emilie Blanchet (E)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.

Aline Mairal (A)

I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.

Rita Derua (R)

KU Leuven-University of Leuven, Department of Cellular and Molecular Medicine, Leuven, Belgium.

Fernando Cardona (F)

Department of Surgical Specialties, Biochemistry and Immunology School of Medicine, University of Malaga, Malaga, Spain.

Diane Beuzelin (D)

I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.

Jean-Sebastien Annicotte (JS)

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, Lille, France.

Nelly Pirot (N)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France.

Adeline Torro (A)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.

Francisco J Tinahones (FJ)

CIBER of Physiopathology, Obesity and Nutrition (CIBEROBN), Málaga, Spain; Unidad de Gestion Clinica de Endocrinologia y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clinico Virgen de la Victoria, Málaga, Spain.

Florence Bernex (F)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France.

Justine Bertrand-Michel (J)

I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.

Dominique Langin (D)

I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France.

Lluis Fajas (L)

Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.

Johannes V Swinnen (JV)

KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium.

Laurent Le Cam (L)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France. laurent.lecam@inserm.fr.
Equipe labélisée Ligue Contre le Cancer, Paris, France. laurent.lecam@inserm.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH