Mapping the serum proteome to neurological diseases using whole genome sequencing.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
02 12 2021
Historique:
received: 15 04 2021
accepted: 11 11 2021
entrez: 3 12 2021
pubmed: 4 12 2021
medline: 5 1 2022
Statut: epublish

Résumé

Despite the increasing global burden of neurological disorders, there is a lack of effective diagnostic and therapeutic biomarkers. Proteins are often dysregulated in disease and have a strong genetic component. Here, we carry out a protein quantitative trait locus analysis of 184 neurologically-relevant proteins, using whole genome sequencing data from two isolated population-based cohorts (N = 2893). In doing so, we elucidate the genetic landscape of the circulating proteome and its connection to neurological disorders. We detect 214 independently-associated variants for 107 proteins, the majority of which (76%) are cis-acting, including 114 variants that have not been previously identified. Using two-sample Mendelian randomisation, we identify causal associations between serum CD33 and Alzheimer's disease, GPNMB and Parkinson's disease, and MSR1 and schizophrenia, describing their clinical potential and highlighting drug repurposing opportunities.

Identifiants

pubmed: 34857772
doi: 10.1038/s41467-021-27387-1
pii: 10.1038/s41467-021-27387-1
pmc: PMC8640022
doi:

Substances chimiques

Biomarkers 0
CD33 protein, human 0
GPNMB protein, human 0
MSR1 protein, human 0
Membrane Glycoproteins 0
Proteome 0
Scavenger Receptors, Class A 0
Sialic Acid Binding Ig-like Lectin 3 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7042

Subventions

Organisme : Medical Research Council
ID : U. MC_UU_00007/10
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_13046
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_U127592696
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00007/10
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12015/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 098051
Pays : United Kingdom

Informations de copyright

© 2021. The Author(s).

Références

Feigin, V. L. et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).
doi: 10.1016/S1474-4422(18)30499-X
GBD. 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 16, 877–897 (2017).
doi: 10.1016/S1474-4422(17)30299-5
Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell. 179, 7 (2019).
De Jager, P. L., Yang, H.-S. & Bennett, D. A. Deconstructing and targeting the genomic architecture of human neurodegeneration. Nat. Neurosci. 21, 1310–1317 (2018).
pubmed: 30258235 doi: 10.1038/s41593-018-0240-z
Ayano, G. et al. Misdiagnosis, detection rate, and associated factors of severe psychiatric disorders in specialized psychiatry centers in Ethiopia. Ann. Gen. Psychiatry 20, 10 (2021).
pubmed: 33531016 pmcid: 7856725 doi: 10.1186/s12991-021-00333-7
Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 27, 954–963 (2021).
pubmed: 34083813 doi: 10.1038/s41591-021-01382-x
Hillary, R. F. et al. Genome and epigenome wide studies of neurological protein biomarkers in the Lothian Birth Cohort 1936. Nat. Commun. 10, 3160 (2019).
pubmed: 31320639 pmcid: 6639385 doi: 10.1038/s41467-019-11177-x
Wingo, A. P. et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. https://doi.org/10.1038/s41588-020-00773-z (2021).
Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab 2, 1135–1148 (2020).
pubmed: 33067605 pmcid: 7611474 doi: 10.1038/s42255-020-00287-2
Yao, C. et al. Genome‐wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat. Commun. 9, 3268 (2018).
pubmed: 30111768 pmcid: 6093935 doi: 10.1038/s41467-018-05512-x
Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).
pubmed: 29875488 pmcid: 6697541 doi: 10.1038/s41586-018-0175-2
Suhre, K. et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun. 8, 14357 (2017).
pubmed: 28240269 pmcid: 5333359 doi: 10.1038/ncomms14357
Alkebsi, L. et al. Validation of the accuracy of self-reported ABO blood types in the Japan Nurses’ Health Study. Asian Pac. J. Cancer Prev. 20, 789–793 (2019).
pubmed: 30909687 pmcid: 6825798 doi: 10.31557/APJCP.2019.20.3.789
Sasayama, D. et al. Genome-wide quantitative trait loci mapping of the human cerebrospinal fluid proteome. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddw366 (2016).
Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 5, 201–214 (2005).
pubmed: 15719024 doi: 10.1038/nri1570
Jenkins, R. W., Canals, D. & Hannun, Y. A. Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell. Signal. 21, 836–846 (2009).
pubmed: 19385042 pmcid: 3488588 doi: 10.1016/j.cellsig.2009.01.026
Park, M. H., Jin, H. K. & Bae, J.-S. Potential therapeutic target for aging and age-related neurodegenerative diseases: the role of acid sphingomyelinase. Exp. Mol. Med. 52, 380–389 (2020).
pubmed: 32203096 pmcid: 7156489 doi: 10.1038/s12276-020-0399-8
Lee, J. K. et al. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer’s disease. J. Exp. Med. 211, 1551–1570 (2014).
pubmed: 25049335 pmcid: 4113944 doi: 10.1084/jem.20132451
Cutler, R. G., Pedersen, W. A., Camandola, S., Rothstein, J. D. & Mattson, M. P. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann. Neurol. 52, 448–457 (2002).
pubmed: 12325074 doi: 10.1002/ana.10312
Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015).
pubmed: 26323059 pmcid: 4589513 doi: 10.1038/ng.3390
Evans, L. M. et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat. Genet. 50, 737–745 (2018).
pubmed: 29700474 pmcid: 5934350 doi: 10.1038/s41588-018-0108-x
Li, J. et al. Proportion of neuropathic pain in the back region in chronic low back pain patients -a multicenter investigation. Sci. Rep. 8, 16537 (2018).
pubmed: 30409981 pmcid: 6224392 doi: 10.1038/s41598-018-33832-x
Thakur, M., Dickenson, A. H. & Baron, R. Osteoarthritis pain: nociceptive or neuropathic? Nat. Rev. Rheumatol. 10, 374–380 (2014).
pubmed: 24686507 doi: 10.1038/nrrheum.2014.47
Pisanu, C. et al. High leptin levels are associated with migraine with aura. Cephalalgia Int. J. Headache 37, 435–441 (2017).
doi: 10.1177/0333102416648650
Zhao, T. et al. Common variants in LTBP3 gene contributed to the risk of hip osteoarthritis in Han Chinese population. Biosci. Rep. 40, BSR20192999 (2020).
Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).
doi: 10.1038/ng.943
Gilabert-Juan, J. et al. Semaphorin and plexin gene expression is altered in the prefrontal cortex of schizophrenia patients with and without auditory hallucinations. Psychiatry Res. 229, 850–857 (2015).
pubmed: 26243375 doi: 10.1016/j.psychres.2015.07.074
Tavares, H., Yacubian, J., Talib, L. L., Barbosa, N. R. & Gattaz, W. F. Increased phospholipase A2 activity in schizophrenia with absent response to niacin. Schizophr. Res. 61, 1–6 (2003).
pubmed: 12648730 doi: 10.1016/S0920-9964(02)00281-5
Szláma, G., Kondás, K., Trexler, M. & Patthy, L. WFIKKN1 and WFIKKN2 bind growth factors TGFβ1, BMP2 and BMP4 but do not inhibit their signalling activity. FEBS J. 277, 5040–5050 (2010).
pubmed: 21054789 doi: 10.1111/j.1742-4658.2010.07909.x
Taylor-Gjevre, R. M., Nair, B. V. & Gjevre, J. A. Obstructive sleep apnoea in relation to rheumatic disease. Rheumatol. Oxf. Engl. 52, 15–21 (2013).
doi: 10.1093/rheumatology/kes210
Kang, J.-H. & Lin, H.-C. Obstructive sleep apnea and the risk of autoimmune diseases: a longitudinal population-based study. Sleep. Med. 13, 583–588 (2012).
pubmed: 22521311 doi: 10.1016/j.sleep.2012.03.002
Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989–993 (2014).
pubmed: 25064009 pmcid: 4146673 doi: 10.1038/ng.3043
Moloney, E. B., Moskites, A., Ferrari, E. J., Isacson, O. & Hallett, P. J. The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson’s disease patients and increases after lysosomal stress. Neurobiol. Dis. 120, 1–11 (2018).
pubmed: 30149180 pmcid: 6748034 doi: 10.1016/j.nbd.2018.08.013
Rose, A. A. N. et al. ADAM10 releases a soluble form of the GPNMB/osteoactivin extracellular domain with angiogenic properties. PLoS ONE 5, e12093 (2010).
pubmed: 20711474 pmcid: 2919417 doi: 10.1371/journal.pone.0012093
Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).
pubmed: 24162737 pmcid: 3896259 doi: 10.1038/ng.2802
Griciuc, A. et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78, 631–643 (2013).
pubmed: 23623698 pmcid: 3706457 doi: 10.1016/j.neuron.2013.04.014
Bradshaw, E. M. et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat. Neurosci. 16, 848–850 (2013).
pubmed: 23708142 pmcid: 3703870 doi: 10.1038/nn.3435
Goes, F. S. et al. Genome-wide association study of schizophrenia in Ashkenazi Jews. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168, 649–659 (2015).
pubmed: 26198764 doi: 10.1002/ajmg.b.32349
Sherva, R. et al. Genome-wide association study of rate of cognitive decline in Alzheimer’s disease patients identifies novel genes and pathways. Alzheimers Dement. J. Alzheimers Assoc. 16, 1134–1145 (2020).
doi: 10.1002/alz.12106
Frenkel, D. et al. Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat. Commun. 4, 2030 (2013).
pubmed: 23799536 doi: 10.1038/ncomms3030
Shichita, T. et al. MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nat. Med. 23, 723–732 (2017).
pubmed: 28394332 doi: 10.1038/nm.4312
Kunjathoor, V. V. et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 277, 49982–49988 (2002).
pubmed: 12376530 doi: 10.1074/jbc.M209649200
Kelley, J. L., Ozment, T. R., Li, C., Schweitzer, J. B. & Williams, D. L. Scavenger receptor-A (CD204): a two-edged sword in health and disease. Crit. Rev. Immunol. 34, 241–261 (2014).
pubmed: 24941076 pmcid: 4191651 doi: 10.1615/CritRevImmunol.2014010267
Cornejo, F. et al. Scavenger Receptor-A deficiency impairs immune response of microglia and astrocytes potentiating Alzheimer’s disease pathophysiology. Brain Behav. Immun. 69, 336–350 (2018).
pubmed: 29246456 doi: 10.1016/j.bbi.2017.12.007
McCollum, L. A. & Roberts, R. C. Uncovering the role of the nucleus accumbens in schizophrenia: a postmortem analysis of tyrosine hydroxylase and vesicular glutamate transporters. Schizophr. Res. 169, 369–373 (2015).
pubmed: 26386900 pmcid: 4755276 doi: 10.1016/j.schres.2015.08.041
McCollum, L. A., Walker, C. K., Roche, J. K. & Roberts, R. C. Elevated excitatory input to the nucleus accumbens in schizophrenia: a postmortem ultrastructural study. Schizophr. Bull. 41, 1123–1132 (2015).
pubmed: 25817135 pmcid: 4535638 doi: 10.1093/schbul/sbv030
Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).
pubmed: 23235832 doi: 10.1038/nature11713
Dujardin, K. & Sgambato, V. Neuropsychiatric disorders in Parkinson’s Disease: what do we know about the role of dopaminergic and non-dopaminergic systems? Front. Neurosci. 14, 25 (2020).
pubmed: 32063833 pmcid: 7000525 doi: 10.3389/fnins.2020.00025
Correll, C. U. et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls.World Psychiatry Off. J. World Psychiatr. Assoc. 16, 163–180 (2017).
Davis, C. A. et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 46, D794–D801 (2018).
pubmed: 29126249 doi: 10.1093/nar/gkx1081
Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).
pubmed: 27910877 doi: 10.1038/nrd.2016.230
Okuno, Y., Matsumura, N. & Oguro, S. Transcatheter arterial embolization using imipenem/cilastatin sodium for tendinopathy and enthesopathy refractory to nonsurgical management. J. Vasc. Interv. Radiol. 24, 787–792 (2013).
pubmed: 23707086 doi: 10.1016/j.jvir.2013.02.033
Lee, S. H. et al. Clinical outcomes of transcatheter arterial embolisation for chronic knee pain: mild-to-moderate versus severe knee osteoarthritis. Cardiovasc. Interv. Radiol. 42, 1530–1536 (2019).
doi: 10.1007/s00270-019-02289-4
Malik, M. et al. Genetics of CD33 in Alzheimer’s disease and acute myeloid leukemia. Hum. Mol. Genet. 24, 3557–3570 (2015).
pubmed: 25762156 pmcid: 4498153 doi: 10.1093/hmg/ddv092
Hiligsmann, M. et al. Health economics in the field of osteoarthritis: an expert’s consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin. Arthritis Rheum. 43, 303–313 (2013).
pubmed: 23992801 doi: 10.1016/j.semarthrit.2013.07.003
Tachmazidou, I. et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat. Genet. 51, 230–236 (2019).
pubmed: 30664745 pmcid: 6400267 doi: 10.1038/s41588-018-0327-1
Miller, R. E., Lu, Y., Tortorella, M. D. & Malfait, A.-M. Genetically engineered mouse models reveal the importance of proteases as osteoarthritis drug targets. Curr. Rheumatol. Rep. 15, 350 (2013).
pubmed: 23926636 pmcid: 4062186 doi: 10.1007/s11926-013-0350-2
Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 22, 19–37 (2021).
pubmed: 32860016 doi: 10.1038/s41576-020-0268-2
Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004 (2010).
pubmed: 21165148 pmcid: 3000457 doi: 10.1371/journal.pone.0015004
Pietzner, M. et al. Genetic architecture of host proteins involved in SARS-CoV-2 infection. Nat. Commun. 11, 6397 (2020).
pubmed: 33328453 pmcid: 7744536 doi: 10.1038/s41467-020-19996-z
Pietzner, M. et al. Cross-platform proteomics to advance genetic prioritisation strategies. http://biorxiv.org/lookup/doi/10.1101/2021.03.18.435919 (2021).
Farmaki, A.-E. et al. The mountainous Cretan dietary patterns and their relationship with cardiovascular risk factors: the Hellenic Isolated Cohorts MANOLIS study. Public Health Nutr. 20, 1063–1074 (2017).
pubmed: 27989266 doi: 10.1017/S1368980016003207
Gilly, A. et al. Very low-depth sequencing in a founder population identifies a cardioprotective APOC3 signal missed by genome-wide imputation. Hum. Mol. Genet. 25, 2360–2365 (2016).
pubmed: 27146844 pmcid: 5081052 doi: 10.1093/hmg/ddw088
Panoutsopoulou, K. et al. Genetic characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants. Nat. Commun. 5, 5345 (2014).
pubmed: 25373335 doi: 10.1038/ncomms6345
Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).
pubmed: 22706312 pmcid: 3386377 doi: 10.1038/ng.2310
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
pubmed: 25722852 pmcid: 4342193 doi: 10.1186/s13742-015-0047-8
Moskvina, V. & Schmidt, K. M. On multiple-testing correction in genome-wide association studies. Genet. Epidemiol. 32, 567–573 (2008).
pubmed: 18425821 doi: 10.1002/gepi.20331
Cheverud, J. M. A simple correction for multiple comparisons in interval mapping genome scans. Heredity 87, 52–58 (2001).
pubmed: 11678987 doi: 10.1046/j.1365-2540.2001.00901.x
Emilsson, V. et al. Co-regulatory networks of human serum proteins link genetics to disease. Science 361, 769–773 (2018).
pubmed: 30072576 pmcid: 6190714 doi: 10.1126/science.aaq1327
McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795 pmcid: 4893825 doi: 10.1186/s13059-016-0974-4
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394 pmcid: 4022491 doi: 10.1371/journal.pgen.1004383
Staley, J. R. et al. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics 32, 3207–3209 (2016).
pubmed: 27318201 pmcid: 5048068 doi: 10.1093/bioinformatics/btw373
Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35, 4851–4853 (2019).
pubmed: 31233103 pmcid: 6853652 doi: 10.1093/bioinformatics/btz469
Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 (2017).
pubmed: 29149188 pmcid: 5711033 doi: 10.1371/journal.pgen.1007081
Hemani, G. et al. The MR-base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).
pubmed: 29846171 pmcid: 5976434 doi: 10.7554/eLife.34408
Ochoa, D. et al. Open targets platform: supporting systematic drug–target identification and prioritisation. Nucleic Acids Res. 49, D1302–D1310 (2021).
pubmed: 33196847 doi: 10.1093/nar/gkaa1027
Wishart, D. S. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).
pubmed: 16381955 doi: 10.1093/nar/gkj067

Auteurs

Grace Png (G)

Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany. grace.png@helmholtz-muenchen.de.
TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany. grace.png@helmholtz-muenchen.de.

Andrei Barysenka (A)

Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.

Linda Repetto (L)

Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.

Pau Navarro (P)

MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.

Xia Shen (X)

Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.

Maik Pietzner (M)

MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.

Eleanor Wheeler (E)

MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.

Nicholas J Wareham (NJ)

MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.

Claudia Langenberg (C)

MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
Computational Medicine, Berlin Institute of Health (BIH), Charité University Medicine, Berlin, Germany.

Emmanouil Tsafantakis (E)

Anogia Medical Centre, Anogia, Greece.

Maria Karaleftheri (M)

Echinos Medical Centre, Echinos, Greece.

George Dedoussis (G)

Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece.

Anders Mälarstig (A)

Department of Medicine, Karolinska Institute, Solna, Sweden.
Emerging Science & Innovation, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA.

James F Wilson (JF)

Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.

Arthur Gilly (A)

Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.

Eleftheria Zeggini (E)

Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany. eleftheria.zeggini@helmholtz-muenchen.de.
TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany. eleftheria.zeggini@helmholtz-muenchen.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH