Quantifying Changes in Chromosome Position to Assess Chromokinesin Activity.
Chromokinesin
Mitosis
Mitotic spindle
Monopolar spindle
Polar ejection force
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
1
1
2022
pubmed:
2
1
2022
medline:
1
4
2022
Statut:
ppublish
Résumé
The chromokinesin KIF22 (Kid, kinesin-10 family) is the primary generator of polar ejection forces, which contribute to chromosome positioning and alignment in mitotic cells. Assessment of KIF22 function requires quantitative comparison of relative polar ejection forces between experimental conditions. This is facilitated by the generation of monopolar spindles to reduce the impact of bioriented microtubule attachment at kinetochores on chromosome positions and increase the dependence of chromosome positions on chromokinesin activity. Radial profile plots measure the intensity of chromatin signal in concentric circles around the poles of monopolar cells and represent an expedient quantitative measure of relative polar ejection forces. As such, this assay can be used to measure changes in polar ejection forces resulting from chromokinesin depletion or perturbation.
Identifiants
pubmed: 34972951
doi: 10.1007/978-1-0716-1904-9_10
doi:
Substances chimiques
DNA-Binding Proteins
0
Nuclear Proteins
0
chromokinesin
0
Kinesins
EC 3.6.4.4
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
139-149Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM121491
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM144133
Pays : United States
Informations de copyright
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Levesque AA, Compton DA (2001) The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J Cell Biol 154:1135–1146. https://doi.org/10.1083/jcb.200106093
doi: 10.1083/jcb.200106093
pubmed: 11564754
pmcid: 2150818
Iemura K, Tanaka K (2015) Chromokinesin Kid and kinetochore kinesin CENP-E differentially support chromosome congression without end-on attachment to microtubules. Nat Commun 6:1–11. https://doi.org/10.1038/ncomms7447
doi: 10.1038/ncomms7447
Stumpff J, Wagenbach M, Franck A et al (2012) Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Dev Cell 22:1017–1029. https://doi.org/10.1016/j.devcel.2012.02.013
doi: 10.1016/j.devcel.2012.02.013
pubmed: 22595673
pmcid: 3356572
Ohsugi M, Adachi K, Horai R et al (2008) Kid-mediated chromosome compaction ensures proper nuclear envelope formation. Cell 132:771–782. https://doi.org/10.1016/j.cell.2008.01.029
doi: 10.1016/j.cell.2008.01.029
pubmed: 18329364
Soeda S, Yamada-Nomoto K, Ohsugi M (2016) The microtubule-binding and coiled-coil domains of Kid are required to turn off the polar ejection force at anaphase. J Cell Sci 129:3609–3619. https://doi.org/10.1242/jcs.189969
doi: 10.1242/jcs.189969
pubmed: 27550518
Brouhard GJ, Hunt AJ (2005) Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proc Natl Acad Sci U S A 102:13903–13908. https://doi.org/10.1073/pnas.0506017102
doi: 10.1073/pnas.0506017102
pubmed: 16174726
pmcid: 1236563
DeLuca JG, Dong Y, Hergert P et al (2005) Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell 16:519–531. https://doi.org/10.1091/mbc.E04-09-0852
doi: 10.1091/mbc.E04-09-0852
pubmed: 15548592
pmcid: 545888
Cassimeris L, Rieder CL, Salmon ED (1994) Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles - implications for the mechanism of chromosome congression. J Cell Sci 107:285–297
doi: 10.1242/jcs.107.1.285
Cane S, Ye AA, Luks-Morgan SJ, Maresca TJ (2013) Elevated polar ejection forces stabilize kinetochore–microtubule attachments. J Cell Biol 200:203–218. https://doi.org/10.1083/jcb.201211119
doi: 10.1083/jcb.201211119
pubmed: 23337118
pmcid: 3549975
Barisic M, Aguiar P, Geley S, Maiato H (2014) Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces. Nat Cell Biol 16:1249–1256. https://doi.org/10.1038/ncb3060
doi: 10.1038/ncb3060
pubmed: 25383660
Tipton AR, Wren JD, Daum JR et al (2017) GTSE1 regulates spindle microtubule dynamics to control Aurora B kinase and Kif4A chromokinesin on chromosome arms. J Cell Biol 216:3117–3132. https://doi.org/10.1083/jcb.201610012
doi: 10.1083/jcb.201610012
pubmed: 28821562
pmcid: 5626529
Baggethun P (2019) Radial profile plot. https://imagej.nih.gov/ij/plugins/radial-profile.html
Chung JY-M, Steen JA, Schwarz TL (2016) Phosphorylation-induced motor shedding is required at mitosis for proper distribution and passive inheritance of mitochondria. Cell Rep 16:2142–2155. https://doi.org/10.1016/j.celrep.2016.07.055
doi: 10.1016/j.celrep.2016.07.055
pubmed: 27524620
pmcid: 5001922
Blangy A, Lane HA, d’Hérin P et al (1995) Phosphorylation by p34(cdc2) regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169. https://doi.org/10.1016/0092-8674(95)90142-6
doi: 10.1016/0092-8674(95)90142-6
pubmed: 8548803
Burris HA, Jones SF, Williams DD et al (2010) A phase I study of ispinesib, a kinesin spindle protein inhibitor, administered weekly for three consecutive weeks of a 28-day cycle in patients with solid tumors. Investig New Drugs 29:467–472. https://doi.org/10.1007/s10637-009-9374-x
doi: 10.1007/s10637-009-9374-x
Lad L, Luo L, Carson JD et al (2008) Mechanism of inhibition of human KSP by Ispinesib. Biochemistry 47:3576–3585. https://doi.org/10.1021/bi702061g
doi: 10.1021/bi702061g
pubmed: 18290633
Skoufias DA, DeBonis S, Saoudi Y et al (2006) S-trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J Biol Chem 281:17559–17569. https://doi.org/10.1074/jbc.M511735200
doi: 10.1074/jbc.M511735200
pubmed: 16507573
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089
doi: 10.1038/nmeth.2089
pubmed: 22930834
pmcid: 5554542
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18(1):529. https://doi.org/10.1186/s12859-017-1934-z
doi: 10.1186/s12859-017-1934-z
pubmed: 29187165
pmcid: 5708080
Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019
doi: 10.1038/nmeth.2019
pubmed: 22743772
pmcid: 22743772
Wandke C, Barisic M, Sigl R et al (2012) Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. J Cell Biol 198:847–863. https://doi.org/10.1083/jcb.201110060
doi: 10.1083/jcb.201110060
pubmed: 22945934
pmcid: 3432768