Progranulin mediates immune evasion of pancreatic ductal adenocarcinoma through regulation of MHCI expression.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
10 01 2022
Historique:
received: 07 03 2021
accepted: 22 10 2021
entrez: 11 1 2022
pubmed: 12 1 2022
medline: 11 2 2022
Statut: epublish

Résumé

Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8

Identifiants

pubmed: 35013174
doi: 10.1038/s41467-021-27088-9
pii: 10.1038/s41467-021-27088-9
pmc: PMC8748938
doi:

Substances chimiques

Antibodies, Neutralizing 0
Antigens, Viral 0
GRN protein, human 0
Glycoproteins 0
Histocompatibility Antigens Class I 0
Peptide Fragments 0
Progranulins 0
Viral Proteins 0
glycoprotein peptide 33-41, Lymphocytic choriomeningitis virus 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

156

Informations de copyright

© 2022. The Author(s).

Références

Nielsen, S. R. et al. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Biol. 18, 549–560 (2016).
pubmed: 27088855 pmcid: 4894551 doi: 10.1038/ncb3340
Quaranta, V. et al. Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res. 78, 4253–4269 (2018).
pubmed: 29789416 pmcid: 6076440 doi: 10.1158/0008-5472.CAN-17-3876
Cenik, B., Sephton, C. F., Kutluk Cenik, B., Herz, J. & Yu, G. Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J. Biol. Chem. 287, 32298–32306 (2012).
pubmed: 22859297 pmcid: 3463300 doi: 10.1074/jbc.R112.399170
Cheung, S. T., Cheung, P. F., Cheng, C. K., Wong, N. C. & Fan, S. T. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology 140, 344–355 (2011).
pubmed: 20682318 doi: 10.1053/j.gastro.2010.07.049
Cheung, S. T. et al. Granulin-epithelin precursor overexpression promotes growth and invasion of hepatocellular carcinoma. Clin. Cancer Res. 10, 7629–7636 (2004).
pubmed: 15569995 doi: 10.1158/1078-0432.CCR-04-0960
Yang, D. et al. Progranulin promotes colorectal cancer proliferation and angiogenesis through TNFR2/Akt and ERK signaling pathways. Am. J. Cancer Res. 5, 3085–3097 (2015).
pubmed: 26693061 pmcid: 4656732
Lu, R. & Serrero, G. Mediation of estrogen mitogenic effect in human breast cancer MCF-7 cells by PC-cell-derived growth factor (PCDGF/granulin precursor). Proc. Natl. Acad. Sci. USA 98, 142–147 (2001).
pubmed: 11134521 doi: 10.1073/pnas.98.1.142
Monami, G. et al. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res. 66, 7103–7110 (2006).
pubmed: 16849556 doi: 10.1158/0008-5472.CAN-06-0633
Cheung, P. F. et al. Restoration of natural killer activity in hepatocellular carcinoma by treatment with antibody against granulin-epithelin precursor. Oncoimmunology 4, e1016706 (2015).
pubmed: 26140244 pmcid: 4485783 doi: 10.1080/2162402X.2015.1016706
Cheung, P. F. et al. Granulin-epithelin precursor renders hepatocellular carcinoma cells resistant to natural killer cytotoxicity. Cancer Immunol. Res. 2, 1209–1219 (2014).
pubmed: 25315249 doi: 10.1158/2326-6066.CIR-14-0096
Nguyen, K. B. & Spranger, S. Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling. J. Cell Biol. 219, e201908224 (2020).
pubmed: 31816057 doi: 10.1083/jcb.201908224
Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1267–1284 (2018).
pubmed: 30275043 pmcid: 6169832 doi: 10.1101/gad.314617.118
Garrido, F., Aptsiauri, N., Doorduijn, E. M., Garcia Lora, A. M. & van Hall, T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 39, 44–51 (2016).
pubmed: 26796069 pmcid: 5138279 doi: 10.1016/j.coi.2015.12.007
Beatty, G. L. & Gladney, W. L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21, 687–692 (2015).
pubmed: 25501578 doi: 10.1158/1078-0432.CCR-14-1860
McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271 e1211 (2017).
pubmed: 29107330 pmcid: 5720478 doi: 10.1016/j.cell.2017.10.001
Such, L. et al. Targeting the innate immunoreceptor RIG-I overcomes melanoma-intrinsic resistance to T cell immunotherapy. J. Clin. Invest. 130, 4266–4281 (2020).
pubmed: 32427578 pmcid: 7410049
Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. 10, eaar3342 (2018).
pubmed: 30021886 doi: 10.1126/scitranslmed.aar3342
Maurer, C. et al. Experimental microdissection enables functional harmonisation of pancreatic cancer subtypes. Gut 68, 1034–1043 (2019).
pubmed: 30658994 doi: 10.1136/gutjnl-2018-317706
Lu, I. N. et al. Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression. Nat. Commun. 12, 3895 (2021).
pubmed: 34162860 pmcid: 8222381 doi: 10.1038/s41467-021-23995-z
Groeneveldt, C., van Hall, T., van der Burg, S. H., Ten Dijke, P. & van Montfoort, N. Immunotherapeutic potential of TGF-beta inhibition and oncolytic viruses. Trends Immunol. 41, 406–420 (2020).
pubmed: 32223932 doi: 10.1016/j.it.2020.03.003
Lohneis, P. et al. Cytotoxic tumour-infiltrating T lymphocytes influence outcome in resected pancreatic ductal adenocarcinoma. Eur. J. Cancer 83, 290–301 (2017).
pubmed: 28772128 doi: 10.1016/j.ejca.2017.06.016
Striefler, J. K. et al. P53 overexpression and Ki67-index are associated with outcome in ductal pancreatic adenocarcinoma with adjuvant gemcitabine treatment. Pathol. Res. Pract. 212, 726–734 (2016).
pubmed: 27461834 doi: 10.1016/j.prp.2016.06.001
Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).
pubmed: 32376951 pmcid: 7296553 doi: 10.1038/s41586-020-2229-5
Tanaka, Y. et al. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum. Mol. Genet. 26, 969–988 (2017).
pubmed: 28073925
Elia, L. P., Mason, A. R., Alijagic, A. & Finkbeiner, S. Genetic regulation of neuronal progranulin reveals a critical role for the autophagy-lysosome pathway. J. Neurosci. 39, 3332–3344 (2019).
pubmed: 30696728 pmcid: 6788815 doi: 10.1523/JNEUROSCI.3498-17.2019
Chang, M. C. et al. Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J. Exp. Med. 214, 2611–2628 (2017).
pubmed: 28778989 pmcid: 5584112 doi: 10.1084/jem.20160999
Chen, H. et al. Neoantigen-based immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Cancer Lett. 490, 12–19 (2020).
pubmed: 32590021 doi: 10.1016/j.canlet.2020.06.011
Beel, S. et al. Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum. Mol. Genet. 26, 2850–2863 (2017).
pubmed: 28453791 pmcid: 5886064 doi: 10.1093/hmg/ddx162
Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).
pubmed: 20144757 pmcid: 2852113 doi: 10.1016/j.cell.2010.01.028
Kawai, A., Uchiyama, H., Takano, S., Nakamura, N. & Ohkuma, S. Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy 3, 154–157 (2007).
pubmed: 17204842 doi: 10.4161/auto.3634
Vazquez, C. L. & Colombo, M. I. Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods Enzymol. 452, 85–95 (2009).
pubmed: 19200877 doi: 10.1016/S0076-6879(08)03606-9
Ho, J. C. et al. Granulin-epithelin precursor as a therapeutic target for hepatocellular carcinoma. Hepatology 47, 1524–1532 (2008).
pubmed: 18393387 doi: 10.1002/hep.22191
Wong, N. C. et al. Antibody against granulin-epithelin precursor sensitizes hepatocellular carcinoma to chemotherapeutic agents. Mol. Cancer Ther. 13, 3001–3012 (2014).
pubmed: 25253787 doi: 10.1158/1535-7163.MCT-14-0012
Cheung, P. F. et al. Notch-induced myeloid reprogramming in spontaneous pancreatic ductal adenocarcinoma by dual genetic targeting. Cancer Res. 78, 4997–5010 (2018).
pubmed: 29844119 doi: 10.1158/0008-5472.CAN-18-0052
Mazur, P. K. et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat. Med. 21, 1163–1171 (2015).
pubmed: 26390243 pmcid: 4959788 doi: 10.1038/nm.3952
Steele, N. G. et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin. Cancer Res. 27, 2023–2037 (2021).
pubmed: 33495315 pmcid: 8026631 doi: 10.1158/1078-0432.CCR-20-3715
van Gulijk, M., Dammeijer, F., Aerts, J. & Vroman, H. Combination strategies to optimize efficacy of dendritic cell-based immunotherapy. Front. Immunol. 9, 2759 (2018).
pubmed: 30568653 pmcid: 6289976 doi: 10.3389/fimmu.2018.02759
Poillet-Perez, L. et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. Nat. Cancer 1, 923–934 (2020).
pubmed: 34476408 pmcid: 8409526 doi: 10.1038/s43018-020-00110-7
Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).
pubmed: 32968282 pmcid: 9014559 doi: 10.1038/s41586-020-2746-2
Young, T. M. et al. Autophagy protects tumors from T cell-mediated cytotoxicity via inhibition of TNFalpha-induced apoptosis. Sci. Immunol. 5, eabb9561 (2020).
Noman, M. Z. et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci. Adv. 6, eaax7881 (2020).
pubmed: 32494661 pmcid: 7190323 doi: 10.1126/sciadv.aax7881
Deng, J. et al. ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer. Nat. Cancer 2, 503–514 (2021).
pubmed: 34142094 pmcid: 8205437 doi: 10.1038/s43018-021-00208-6
Ischenko, I. et al. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat. Commun. 12, 1482 (2021).
pubmed: 33674596 pmcid: 7935870 doi: 10.1038/s41467-021-21736-w
Oettle, H. et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA 310, 1473–1481 (2013).
pubmed: 24104372 doi: 10.1001/jama.2013.279201
Tan, W. J. et al. A five-gene reverse transcription-PCR assay for pre-operative classification of breast fibroepithelial lesions. Breast Cancer Res. 18, 31 (2016).
pubmed: 26961242 pmcid: 4784364 doi: 10.1186/s13058-016-0692-6
Baddeley, A. Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R. (CRC Press, 2015).
Page, N. et al. Expression of the DNA-binding factor TOX promotes the encephalitogenic potential of microbe-induced autoreactive CD8(+) T Ccells. Immunity 48, 937–950 e938 (2018).
pubmed: 29768177 pmcid: 6040915 doi: 10.1016/j.immuni.2018.04.005
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15, 3243–3248 (2001).
pubmed: 11751630 pmcid: 312845 doi: 10.1101/gad.943001
Schönhuber, N. et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med 20, 1340–1347 (2014).
pubmed: 25326799 pmcid: 4270133 doi: 10.1038/nm.3646
Nakhai, H. et al. Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134, 1151–1160 (2007).
pubmed: 17301087 doi: 10.1242/dev.02781
Lee, C.-L. et al. p53 Functions in Endothelial Cells to Prevent Radiation-Induced Myocardial Injury in Mice. Sci. Signal. 5, ra52 (2012).
pubmed: 22827996 pmcid: 3533440 doi: 10.1126/scisignal.2002918
Wen, H.-J. et al. Myeloid Cell-Derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell. Mol. Gastroenterol. Hepatol. 8, 173–192 (2019).
pubmed: 31125624 pmcid: 6661420 doi: 10.1016/j.jcmgh.2019.05.006
Pircher, H., Bürki, K., Lang, R., Hengartner, H. & Zinkernagel, R. M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).
pubmed: 2573841 doi: 10.1038/342559a0
Marino, S., Vooijs, M., Van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).
pubmed: 10783170 pmcid: 316543 doi: 10.1101/gad.14.8.994
Cheung, P. F. et al. Granulin-epithelin precursor is an oncofetal protein defining hepatic cancer stem cells. PLoS One 6, e28246 (2011).
pubmed: 22194816 pmcid: 3241621 doi: 10.1371/journal.pone.0028246

Auteurs

Phyllis F Cheung (PF)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

JiaJin Yang (J)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Rui Fang (R)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Arianna Borgers (A)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Kirsten Krengel (K)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Anne Stoffel (A)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Kristina Althoff (K)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Chi Wai Yip (CW)

Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.

Elaine H L Siu (EHL)

Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.

Linda W C Ng (LWC)

Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.

Karl S Lang (KS)

Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany.

Lamin B Cham (LB)

Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany.

Daniel R Engel (DR)

Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany.

Camille Soun (C)

Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany.

Igor Cima (I)

DKFZ-Division Translational Neurooncology at the WTZ, German Cancer Consortium (DKTK partner site Essen/Düsseldorf), Essen, Germany.

Björn Scheffler (B)

DKFZ-Division Translational Neurooncology at the WTZ, German Cancer Consortium (DKTK partner site Essen/Düsseldorf), Essen, Germany.

Jana K Striefler (JK)

Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Berlin, Germany.

Marianne Sinn (M)

Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Berlin, Germany.

Marcus Bahra (M)

Department of Surgical Oncology and Robotics, Krankenhaus Waldfriede, Berlin, Germany.

Uwe Pelzer (U)

Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charité University Hospital, Berlin, Germany.

Helmut Oettle (H)

Praxis und Tagesklinik, Dresden, Germany.

Peter Markus (P)

Department of General, Visceral and Trauma Surgery, Elisabeth Hospital Essen, Essen, Germany.

Esther M M Smeets (EMM)

Department of Medical Imaging, Radboud university medical Center, Nijmegen, The Netherlands.

Erik H J G Aarntzen (EHJG)

Department of Medical Imaging, Radboud university medical Center, Nijmegen, The Netherlands.

Konstantinos Savvatakis (K)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Sven-Thorsten Liffers (ST)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Smiths S Lueong (SS)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Christian Neander (C)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Anna Bazarna (A)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Xin Zhang (X)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.

Annette Paschen (A)

Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

Howard C Crawford (HC)

Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.

Anthony W H Chan (AWH)

Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.

Siu Tim Cheung (ST)

Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China. stcheung@surgery.cuhk.edu.hk.
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China. stcheung@surgery.cuhk.edu.hk.

Jens T Siveke (JT)

Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany. j.siveke@dkfz.de.
Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany. j.siveke@dkfz.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH