Progranulin mediates immune evasion of pancreatic ductal adenocarcinoma through regulation of MHCI expression.
Adenocarcinoma
/ genetics
Animals
Antibodies, Neutralizing
/ pharmacology
Antigens, Viral
/ genetics
Autophagy
/ drug effects
CD8-Positive T-Lymphocytes
/ drug effects
Carcinoma, Pancreatic Ductal
/ genetics
Cell Line, Tumor
Cell Movement
/ drug effects
Cohort Studies
Cytotoxicity, Immunologic
Gene Expression
Glycoproteins
/ genetics
Histocompatibility Antigens Class I
/ genetics
Humans
Lymphocytic choriomeningitis virus
/ genetics
Mice
Pancreatic Neoplasms
/ genetics
Peptide Fragments
/ genetics
Progranulins
/ antagonists & inhibitors
Proteolysis
Survival Analysis
Tumor Escape
/ genetics
Tumor Microenvironment
/ genetics
Viral Proteins
/ genetics
Xenograft Model Antitumor Assays
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
10 01 2022
10 01 2022
Historique:
received:
07
03
2021
accepted:
22
10
2021
entrez:
11
1
2022
pubmed:
12
1
2022
medline:
11
2
2022
Statut:
epublish
Résumé
Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8
Identifiants
pubmed: 35013174
doi: 10.1038/s41467-021-27088-9
pii: 10.1038/s41467-021-27088-9
pmc: PMC8748938
doi:
Substances chimiques
Antibodies, Neutralizing
0
Antigens, Viral
0
GRN protein, human
0
Glycoproteins
0
Histocompatibility Antigens Class I
0
Peptide Fragments
0
Progranulins
0
Viral Proteins
0
glycoprotein peptide 33-41, Lymphocytic choriomeningitis virus
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
156Informations de copyright
© 2022. The Author(s).
Références
Nielsen, S. R. et al. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Biol. 18, 549–560 (2016).
pubmed: 27088855
pmcid: 4894551
doi: 10.1038/ncb3340
Quaranta, V. et al. Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res. 78, 4253–4269 (2018).
pubmed: 29789416
pmcid: 6076440
doi: 10.1158/0008-5472.CAN-17-3876
Cenik, B., Sephton, C. F., Kutluk Cenik, B., Herz, J. & Yu, G. Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J. Biol. Chem. 287, 32298–32306 (2012).
pubmed: 22859297
pmcid: 3463300
doi: 10.1074/jbc.R112.399170
Cheung, S. T., Cheung, P. F., Cheng, C. K., Wong, N. C. & Fan, S. T. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology 140, 344–355 (2011).
pubmed: 20682318
doi: 10.1053/j.gastro.2010.07.049
Cheung, S. T. et al. Granulin-epithelin precursor overexpression promotes growth and invasion of hepatocellular carcinoma. Clin. Cancer Res. 10, 7629–7636 (2004).
pubmed: 15569995
doi: 10.1158/1078-0432.CCR-04-0960
Yang, D. et al. Progranulin promotes colorectal cancer proliferation and angiogenesis through TNFR2/Akt and ERK signaling pathways. Am. J. Cancer Res. 5, 3085–3097 (2015).
pubmed: 26693061
pmcid: 4656732
Lu, R. & Serrero, G. Mediation of estrogen mitogenic effect in human breast cancer MCF-7 cells by PC-cell-derived growth factor (PCDGF/granulin precursor). Proc. Natl. Acad. Sci. USA 98, 142–147 (2001).
pubmed: 11134521
doi: 10.1073/pnas.98.1.142
Monami, G. et al. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res. 66, 7103–7110 (2006).
pubmed: 16849556
doi: 10.1158/0008-5472.CAN-06-0633
Cheung, P. F. et al. Restoration of natural killer activity in hepatocellular carcinoma by treatment with antibody against granulin-epithelin precursor. Oncoimmunology 4, e1016706 (2015).
pubmed: 26140244
pmcid: 4485783
doi: 10.1080/2162402X.2015.1016706
Cheung, P. F. et al. Granulin-epithelin precursor renders hepatocellular carcinoma cells resistant to natural killer cytotoxicity. Cancer Immunol. Res. 2, 1209–1219 (2014).
pubmed: 25315249
doi: 10.1158/2326-6066.CIR-14-0096
Nguyen, K. B. & Spranger, S. Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling. J. Cell Biol. 219, e201908224 (2020).
pubmed: 31816057
doi: 10.1083/jcb.201908224
Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1267–1284 (2018).
pubmed: 30275043
pmcid: 6169832
doi: 10.1101/gad.314617.118
Garrido, F., Aptsiauri, N., Doorduijn, E. M., Garcia Lora, A. M. & van Hall, T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 39, 44–51 (2016).
pubmed: 26796069
pmcid: 5138279
doi: 10.1016/j.coi.2015.12.007
Beatty, G. L. & Gladney, W. L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21, 687–692 (2015).
pubmed: 25501578
doi: 10.1158/1078-0432.CCR-14-1860
McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271 e1211 (2017).
pubmed: 29107330
pmcid: 5720478
doi: 10.1016/j.cell.2017.10.001
Such, L. et al. Targeting the innate immunoreceptor RIG-I overcomes melanoma-intrinsic resistance to T cell immunotherapy. J. Clin. Invest. 130, 4266–4281 (2020).
pubmed: 32427578
pmcid: 7410049
Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. 10, eaar3342 (2018).
pubmed: 30021886
doi: 10.1126/scitranslmed.aar3342
Maurer, C. et al. Experimental microdissection enables functional harmonisation of pancreatic cancer subtypes. Gut 68, 1034–1043 (2019).
pubmed: 30658994
doi: 10.1136/gutjnl-2018-317706
Lu, I. N. et al. Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression. Nat. Commun. 12, 3895 (2021).
pubmed: 34162860
pmcid: 8222381
doi: 10.1038/s41467-021-23995-z
Groeneveldt, C., van Hall, T., van der Burg, S. H., Ten Dijke, P. & van Montfoort, N. Immunotherapeutic potential of TGF-beta inhibition and oncolytic viruses. Trends Immunol. 41, 406–420 (2020).
pubmed: 32223932
doi: 10.1016/j.it.2020.03.003
Lohneis, P. et al. Cytotoxic tumour-infiltrating T lymphocytes influence outcome in resected pancreatic ductal adenocarcinoma. Eur. J. Cancer 83, 290–301 (2017).
pubmed: 28772128
doi: 10.1016/j.ejca.2017.06.016
Striefler, J. K. et al. P53 overexpression and Ki67-index are associated with outcome in ductal pancreatic adenocarcinoma with adjuvant gemcitabine treatment. Pathol. Res. Pract. 212, 726–734 (2016).
pubmed: 27461834
doi: 10.1016/j.prp.2016.06.001
Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).
pubmed: 32376951
pmcid: 7296553
doi: 10.1038/s41586-020-2229-5
Tanaka, Y. et al. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum. Mol. Genet. 26, 969–988 (2017).
pubmed: 28073925
Elia, L. P., Mason, A. R., Alijagic, A. & Finkbeiner, S. Genetic regulation of neuronal progranulin reveals a critical role for the autophagy-lysosome pathway. J. Neurosci. 39, 3332–3344 (2019).
pubmed: 30696728
pmcid: 6788815
doi: 10.1523/JNEUROSCI.3498-17.2019
Chang, M. C. et al. Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J. Exp. Med. 214, 2611–2628 (2017).
pubmed: 28778989
pmcid: 5584112
doi: 10.1084/jem.20160999
Chen, H. et al. Neoantigen-based immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Cancer Lett. 490, 12–19 (2020).
pubmed: 32590021
doi: 10.1016/j.canlet.2020.06.011
Beel, S. et al. Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum. Mol. Genet. 26, 2850–2863 (2017).
pubmed: 28453791
pmcid: 5886064
doi: 10.1093/hmg/ddx162
Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).
pubmed: 20144757
pmcid: 2852113
doi: 10.1016/j.cell.2010.01.028
Kawai, A., Uchiyama, H., Takano, S., Nakamura, N. & Ohkuma, S. Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy 3, 154–157 (2007).
pubmed: 17204842
doi: 10.4161/auto.3634
Vazquez, C. L. & Colombo, M. I. Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods Enzymol. 452, 85–95 (2009).
pubmed: 19200877
doi: 10.1016/S0076-6879(08)03606-9
Ho, J. C. et al. Granulin-epithelin precursor as a therapeutic target for hepatocellular carcinoma. Hepatology 47, 1524–1532 (2008).
pubmed: 18393387
doi: 10.1002/hep.22191
Wong, N. C. et al. Antibody against granulin-epithelin precursor sensitizes hepatocellular carcinoma to chemotherapeutic agents. Mol. Cancer Ther. 13, 3001–3012 (2014).
pubmed: 25253787
doi: 10.1158/1535-7163.MCT-14-0012
Cheung, P. F. et al. Notch-induced myeloid reprogramming in spontaneous pancreatic ductal adenocarcinoma by dual genetic targeting. Cancer Res. 78, 4997–5010 (2018).
pubmed: 29844119
doi: 10.1158/0008-5472.CAN-18-0052
Mazur, P. K. et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat. Med. 21, 1163–1171 (2015).
pubmed: 26390243
pmcid: 4959788
doi: 10.1038/nm.3952
Steele, N. G. et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin. Cancer Res. 27, 2023–2037 (2021).
pubmed: 33495315
pmcid: 8026631
doi: 10.1158/1078-0432.CCR-20-3715
van Gulijk, M., Dammeijer, F., Aerts, J. & Vroman, H. Combination strategies to optimize efficacy of dendritic cell-based immunotherapy. Front. Immunol. 9, 2759 (2018).
pubmed: 30568653
pmcid: 6289976
doi: 10.3389/fimmu.2018.02759
Poillet-Perez, L. et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. Nat. Cancer 1, 923–934 (2020).
pubmed: 34476408
pmcid: 8409526
doi: 10.1038/s43018-020-00110-7
Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).
pubmed: 32968282
pmcid: 9014559
doi: 10.1038/s41586-020-2746-2
Young, T. M. et al. Autophagy protects tumors from T cell-mediated cytotoxicity via inhibition of TNFalpha-induced apoptosis. Sci. Immunol. 5, eabb9561 (2020).
Noman, M. Z. et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci. Adv. 6, eaax7881 (2020).
pubmed: 32494661
pmcid: 7190323
doi: 10.1126/sciadv.aax7881
Deng, J. et al. ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer. Nat. Cancer 2, 503–514 (2021).
pubmed: 34142094
pmcid: 8205437
doi: 10.1038/s43018-021-00208-6
Ischenko, I. et al. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat. Commun. 12, 1482 (2021).
pubmed: 33674596
pmcid: 7935870
doi: 10.1038/s41467-021-21736-w
Oettle, H. et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA 310, 1473–1481 (2013).
pubmed: 24104372
doi: 10.1001/jama.2013.279201
Tan, W. J. et al. A five-gene reverse transcription-PCR assay for pre-operative classification of breast fibroepithelial lesions. Breast Cancer Res. 18, 31 (2016).
pubmed: 26961242
pmcid: 4784364
doi: 10.1186/s13058-016-0692-6
Baddeley, A. Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R. (CRC Press, 2015).
Page, N. et al. Expression of the DNA-binding factor TOX promotes the encephalitogenic potential of microbe-induced autoreactive CD8(+) T Ccells. Immunity 48, 937–950 e938 (2018).
pubmed: 29768177
pmcid: 6040915
doi: 10.1016/j.immuni.2018.04.005
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15, 3243–3248 (2001).
pubmed: 11751630
pmcid: 312845
doi: 10.1101/gad.943001
Schönhuber, N. et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med 20, 1340–1347 (2014).
pubmed: 25326799
pmcid: 4270133
doi: 10.1038/nm.3646
Nakhai, H. et al. Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134, 1151–1160 (2007).
pubmed: 17301087
doi: 10.1242/dev.02781
Lee, C.-L. et al. p53 Functions in Endothelial Cells to Prevent Radiation-Induced Myocardial Injury in Mice. Sci. Signal. 5, ra52 (2012).
pubmed: 22827996
pmcid: 3533440
doi: 10.1126/scisignal.2002918
Wen, H.-J. et al. Myeloid Cell-Derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell. Mol. Gastroenterol. Hepatol. 8, 173–192 (2019).
pubmed: 31125624
pmcid: 6661420
doi: 10.1016/j.jcmgh.2019.05.006
Pircher, H., Bürki, K., Lang, R., Hengartner, H. & Zinkernagel, R. M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).
pubmed: 2573841
doi: 10.1038/342559a0
Marino, S., Vooijs, M., Van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).
pubmed: 10783170
pmcid: 316543
doi: 10.1101/gad.14.8.994
Cheung, P. F. et al. Granulin-epithelin precursor is an oncofetal protein defining hepatic cancer stem cells. PLoS One 6, e28246 (2011).
pubmed: 22194816
pmcid: 3241621
doi: 10.1371/journal.pone.0028246