Insights into the ribosomal trans-translation rescue system: lessons from recent structural studies.


Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
03 2023
Historique:
revised: 27 12 2021
received: 06 10 2021
accepted: 10 01 2022
pubmed: 12 1 2022
medline: 21 3 2023
entrez: 11 1 2022
Statut: ppublish

Résumé

The arrest of protein synthesis caused when ribosomes stall on an mRNA lacking a stop codon is a deadly risk for all cells. In bacteria, this situation is remedied by the trans-translation quality control system. Trans-translation occurs because of the synergistic action of two main partners, transfer-messenger RNA (tmRNA) and small protein B (SmpB). These act in complex to monitor protein synthesis, intervening when necessary to rescue stalled ribosomes. During this process, incomplete nascent peptides are tagged for destruction, problematic mRNAs are degraded and the previously stalled ribosomes are recycled. In this 'Structural Snapshot' article, we describe the mechanism at the molecular level, a view updated after the most recent structural studies using cryo-electron microscopy.

Identifiants

pubmed: 35015931
doi: 10.1111/febs.16349
doi:

Substances chimiques

RNA, Bacterial 0
Codon, Terminator 0
RNA, Messenger 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1461-1472

Informations de copyright

© 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

Cougot N, Molza A-E, Delesques J, Giudice E, Cavalier A, Rolland J-P, et al. Visualizing compaction of polysomes in bacteria. J Mol Biol. 2014;426:377-88.
Ito K, Chadani Y, Nakamori K, Chiba S, Akiyama Y, Abo T. Nascentome analysis uncovers futile protein synthesis in Escherichia coli. PLoS One. 2011;6:e28413.
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome rescue pathways in bacteria. Front Microbiol. 2021;12:652980.
Gimple O, Schön A. In vitro and in vivo processing of cyanelle tmRNA by RNase P. Biol Chem. 2001;382:1421-9.
Komine Y, Kitabatake M, Yokogawa T, Nishikawa K, Inokuchi H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci USA. 1994;91:9223-7.
Li Z, Pandit S, Deutscher MP. 3’ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc Natl Acad Sci USA. 1998;95:2856-61.
Lin-Chao S, Wei C-L, Lin Y-T. RNase E is required for the maturation of ssrA RNA and normal ssrA RNA peptide-tagging activity. PNAS. 1999;96:12406-11.
Moore SD, Sauer RT. The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem. 2007;76:101-24.
Karzai AW, Susskind MM, Sauer RT. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J. 1999;18:3793-9.
Barends S, Karzai AW, Sauer RT, Wower J, Kraal B. Simultaneous and functional binding of SmpB and EF-Tu·GTP to the alanyl acceptor arm of tmRNA 11Edited by J. Doudna. J Mol Biol. 2001;314:9-21.
Bugaeva EY, Shpanchenko OV, Felden B, Isaksson LA, Dontsova OA. One SmpB molecule accompanies tmRNA during its passage through the ribosomes. FEBS Lett. 2008;582:1532-6.
Neubauer C, Gillet R, Kelley AC, Ramakrishnan V. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science. 2012;335:1366-9.
Richards J, Mehta P, Karzai AW. RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol Microbiol. 2006;62:1700-12.
Keiler KC, Waller PR, Sauer RT. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 1996;271:990-3.
Bessho Y, Shibata R, Sekine S, Murayama K, Higashijima K, Hori-Takemoto C, et al. Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA. Proc Natl Acad Sci USA. 2007;104:8293-8.
Hudson CM, Williams KP. The tmRNA website. Nucleic Acids Res. 2015;43:D138-40.
Shimizu Y. ArfA recruits RF2 into stalled ribosomes. J Mol Biol. 2012;423:624-31.
Chadani Y, Ono K, Kutsukake K, Abo T. Escherichia coli YaeJ protein mediates a novel ribosome-rescue pathway distinct from SsrA- and ArfA-mediated pathways. Mol Microbiol. 2011;80:772-85.
Lytvynenko I, Paternoga H, Thrun A, Balke A, Müller TA, Chiang CH, et al. Alanine Tails Signal Proteolysis in Bacterial Ribosome-Associated Quality Control. Cell. 2019;178:76-90.e22.
Goralski TDP, Kirimanjeswara GS, Keiler KC. A new mechanism for ribosome rescue can recruit RF1 or RF2 to nonstop ribosomes. MBio. 2018;9:e02436-18.
Shimokawa-Chiba N, Müller C, Fujiwara K, Beckert B, Ito K, Wilson DN, et al. Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis. Nat Commun. 2019;10:5397.
Keiler KC, Feaga HA. Resolving nonstop translation complexes is a matter of life or death. J Bacteriol. 2014;196:2123-30.
Chadani Y, Ono K, Ozawa S, Takahashi Y, Takai K, Nanamiya H, et al. Ribosome rescue by Escherichia coli ArfA (YhdL) in the absence of trans-translation system. Mol Microbiol. 2010;78:796-808.
Rae CD, Gordiyenko Y, Ramakrishnan V. How a circularized tmRNA moves through the ribosome. Science. 2019;363:740-4.
Guyomar C, D’Urso G, Chat S, Giudice E, Gillet R. Structures of tmRNA and SmpB as they transit through the ribosome. Nat Commun. 2021;12:4909.
Valle M, Gillet R, Kaur S, Henne A, Ramakrishnan V, Frank J. Visualizing tmRNA entry into a stalled ribosome. Science. 2003;300:127-30.
Schmeing TM, Ramakrishnan V. What recent ribosome structures have revealed about the mechanism of translation. Nature. 2009;461:1234-42.
Voorhees RM, Ramakrishnan V. Structural basis of the translational elongation cycle. Annu Rev Biochem. 2013;82:203-36.
Stagg SM, Frazer-Abel AA, Hagerman PJ, Harvey SC. Structural studies of the tRNA domain of tmRNA. J Mol Biol. 2001;309:727-35.
Gutmann S, Haebel PW, Metzinger L, Sutter M, Felden B, Ban N. Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature. 2003;424:699-703.
Weis F, Bron P, Giudice E, Rolland J-P, Thomas D, Felden B, et al. tmRNA-SmpB: a journey to the centre of the bacterial ribosome. EMBO J. 2010;29:3810-8.
Fu J, Hashem Y, Wower I, Lei J, Liao HY, Zwieb C, et al. Visualizing the transfer-messenger RNA as the ribosome resumes translation. EMBO J. 2010;29:3819-25.
Ogle JM, Brodersen DE, Clemons WM, Tarry MJ, Carter AP, Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001;292:897-902.
Pape T, Wintermeyer W, Rodnina MV. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 1998;17:7490-7.
Rodnina MV, Wintermeyer W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu Rev Biochem. 2001;70:415-35.
Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell. 2002;111:721-32.
Felden B, Himeno H, Muto A, McCutcheon JP, Atkins JF, Gesteland RF. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA). RNA. 1997;3:89-103.
Cheng K, Ivanova N, Scheres SHW, Pavlov MY, Carazo JM, Hebert H, et al. tmRNA.SmpB complex mimics native aminoacyl-tRNAs in the A site of stalled ribosomes. J Struct Biol. 2010;169:342-8.
James NR, Brown A, Gordiyenko Y, Ramakrishnan V. Translational termination without a stop codon. Science. 2016;354:1437-40.
Giudice E, Mace K, Gillet R. Trans-translation exposed: understanding the structures and functions of tmRNA-SmpB. Front Microbiol. 2014;5:113.
Ermolenko DN, Majumdar ZK, Hickerson RP, Spiegel PC, Clegg RM, Noller HF. Observation of intersubunit movement of the ribosome in solution using FRET. J Mol Biol. 2007;370:530-40.
Mohan S, Donohue JP, Noller HF. Molecular mechanics of 30S subunit head rotation. Proc Natl Acad Sci USA. 2014;111:13325-30.
Guo Z, Noller HF. Rotation of the head of the 30S ribosomal subunit during mRNA translocation. Proc Natl Acad Sci USA. 2012;109:20391-4.
Ramrath DJF, Yamamoto H, Rother K, Wittek D, Pech M, Mielke T, et al. The complex of tmRNA-SmpB and EF-G on translocating ribosomes. Nature. 2012;485:526-9.
Feaga HA, Viollier PH, Keiler KC. Release of nonstop ribosomes is essential. MBio. 2014;5:e01916.
Campos-Silva R, D’Urso G, Delalande O, Giudice E, Macedo AJ, Gillet R. Trans-translation is an appealing target for the development of new antimicrobial compounds. Microorganisms. 2021;10:3.
Thepaut M, Campos-Silva R, Renard E, Barloy-Hubler F, Ennifar E, Boujard D, et al. Safe and easy in vitro evaluation of tmRNA-SmpB-mediated trans-translation from ESKAPE pathogenic bacteria. RNA. 2021;11:1399.
Aron ZD, Mehrani A, Hoffer ED, Connolly KL, Srinivas P, Torhan MC, et al. trans-Translation inhibitors bind to a novel site on the ribosome and clear Neisseria gonorrhoeae in vivo. Nat Commun. 2021;12:1799.
Camenares D, Dulebohn DP, Svetlanov A, Karzai AW. Active and Accurate trans-translation requires distinct determinants in the C-terminal tail of SmpB protein and the mRNA-like domain of transfer messenger RNA (tmRNA) *♦. J Biol Chem. 2013;288:30527-42.
Konno T, Kurita D, Takada K, Muto A, Himeno H. A functional interaction of SmpB with tmRNA for determination of the resuming point of trans-translation. RNA. 2007;13:1723-31.
Miller MR, Healey DW, Robison SG, Dewey JD, Buskirk AR. The role of upstream sequences in selecting the reading frame on tmRNA. BMC Biol. 2008;6:29.
Watts T, Cazier D, Healey D, Buskirk A. SmpB contributes to reading frame selection in the translation of transfer-messenger RNA. J Mol Biol. 2009;391:275-81.
Kucukelbir A, Sigworth FJ, Tagare HD. Quantifying the local resolution of cryo-EM density maps. Nat Methods. 2014;11:63-5.
Wower IK, Zwieb C, Wower J. Transfer-messenger RNA unfolds as it transits the ribosome. RNA. 2005;11:668-73.
Bugaeva EY, Surkov S, Golovin AV, Ofverstedt L-G, Skoglund U, Isaksson LA, et al. Structural features of the tmRNA-ribosome interaction. RNA. 2009;15:2312-20.
Takyar S, Hickerson RP, Noller HF. mRNA helicase activity of the ribosome. Cell. 2005;120:49-58.
Qu X, Wen J-D, Lancaster L, Noller HF, Bustamante C, Tinoco I. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature. 2011;475:118-21.
Zhang Y, Hong S, Ruangprasert A, Skiniotis G, Dunham CM. Alternative Mode of E-Site tRNA Binding in the Presence of a Downstream mRNA Stem Loop at the Entrance Channel. Structure. 2018;26:437-445.e3.
Amiri H, Noller HF. Structural evidence for product stabilization by the ribosomal mRNA helicase. RNA. 2019;25:364-75.
Felden B, Gillet R. SmpB as the handyman of tmRNA during trans-translation. RNA Biol. 2011;8:440-9.
Shimizu Y, Ueda T. The role of SmpB protein in trans-translation. FEBS Lett. 2002;514:74-7.
Hanawa-Suetsugu K, Takagi M, Inokuchi H, Himeno H, Muto A. SmpB functions in various steps of trans-translation. Nucleic Acids Res. 2002;30:1620-9.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605-12.

Auteurs

Gaetano D'Urso (G)

Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France.

Charlotte Guyomar (C)

Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France.

Sophie Chat (S)

Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France.

Emmanuel Giudice (E)

Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France.

Reynald Gillet (R)

Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Cryoelectron Microscopy Algorithms Image Processing, Computer-Assisted Consensus Software

Classifications MeSH