Connectivity of Fennoscandian Shield terrestrial deep biosphere microbiomes with surface communities.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
11 01 2022
11 01 2022
Historique:
received:
17
06
2021
accepted:
15
12
2021
entrez:
12
1
2022
pubmed:
13
1
2022
medline:
15
3
2022
Statut:
epublish
Résumé
The deep biosphere is an energy constrained ecosystem yet fosters diverse microbial communities that are key in biogeochemical cycling. Whether microbial communities in deep biosphere groundwaters are shaped by infiltration of allochthonous surface microorganisms or the evolution of autochthonous species remains unresolved. In this study, 16S rRNA gene amplicon analyses showed that few groups of surface microbes infiltrated deep biosphere groundwaters at the Äspö Hard Rock Laboratory, Sweden, but that such populations constituted up to 49% of the microbial abundance. The dominant persisting phyla included Patescibacteria, Proteobacteria, and Epsilonbacteraeota. Despite the hydrological connection of the Baltic Sea with the studied groundwaters, infiltrating microbes predominantly originated from deep soil groundwater. Most deep biosphere groundwater populations lacked surface representatives, suggesting that they have evolved from ancient autochthonous populations. We propose that deep biosphere groundwater communities in the Fennoscandian Shield consist of selected infiltrated and indigenous populations adapted to the prevailing conditions.
Identifiants
pubmed: 35017653
doi: 10.1038/s42003-021-02980-8
pii: 10.1038/s42003-021-02980-8
pmc: PMC8752596
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
37Subventions
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2018-04311
Informations de copyright
© 2022. The Author(s).
Références
Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).
doi: 10.1038/s41561-018-0221-6
Pedersen, K., Bengtsson, A. F., Edlund, J. S. & Eriksson, L. C. Sulphate-controlled diversity of subterranean microbial communities over depth in deep groundwater with opposing gradients of sulphate and methane. Geomicrobiol. J. 31, 617–631 (2014).
doi: 10.1080/01490451.2013.879508
Bell, E. et al. Active sulfur cycling in the terrestrial deep subsurface. ISME J. 14, 1260–1272 (2020).
pubmed: 32047278
pmcid: 7174417
doi: 10.1038/s41396-020-0602-x
Kotelnikova, S. Microbial production and oxidation of methane in deep subsurface. Earth-Sci. Rev. 58, 367–395 (2002).
doi: 10.1016/S0012-8252(01)00082-4
Onstott, T. C. et al. In Enigmatic Microorganisms and Life in Extreme Environments (Joseph Seckbach ed) 487–500 (Springer Netherlands, 1999).
Lopez-Fernandez, M. et al. Investigation of viable taxa in the deep terrestrial biosphere suggests high rates of nutrient recycling. FEMS Microbiol. Ecol. 94, fiy121 (2018).
pmcid: 6030916
doi: 10.1093/femsec/fiy121
Lopez-Fernandez, M. et al. Metatranscriptomes reveal all three domains of life are active, but are dominated by bacteria in the Fennoscandian crystalline granitic continental deep biosphere. mBio 9, e01792–01718 (2018).
pubmed: 30459191
pmcid: 6247080
doi: 10.1128/mBio.01792-18
Baker, B. J. et al. Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J. 7, 1962–1973 (2013).
pubmed: 23702516
pmcid: 3965313
doi: 10.1038/ismej.2013.85
Lau, M. C. et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc. Natl Acad. Sci. USA 113, E7927–E7936 (2016).
Wu, X. et al. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. ISME J. 10, 1192–1203 (2016).
pubmed: 26484735
doi: 10.1038/ismej.2015.185
Simkus, D. N. et al. Variations in microbial carbon sources and cycling in the deep continental subsurface. Geochim. Cosmochim. Acta 173, 264–283 (2016).
doi: 10.1016/j.gca.2015.10.003
Jones, R. E., Beeman, R. E. & Suflita, J. M. Anaerobic metabolic processes in the deep terrestrial subsurface. Geomicrobiol. J. 7, 117–130 (1989).
doi: 10.1080/01490458909377854
Lopez-Fernandez, M., Astrom, M., Bertilsson, S. & Dopson, M. Depth and dissolved organic carbon shape microbial communities in surface influenced but not ancient saline terrestrial aquifers. Front. Microbiol. 9, 2880 (2018).
pubmed: 30538690
pmcid: 6277548
doi: 10.3389/fmicb.2018.02880
Holm, N. G., Oze, C., Mousis, O., Waite, J. & Guilbert-Lepoutre, A. Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology 15, 587–600 (2015).
pubmed: 26154779
pmcid: 4523005
doi: 10.1089/ast.2014.1188
Parkes, R. J. et al. Rock-crushing derived hydrogen directly supports a methanogenic community: significance for the deep biosphere. Environ. Microbiol. Rep. 11, 165–172 (2019).
pubmed: 30507067
doi: 10.1111/1758-2229.12723
Casar, C. P. et al. Mineral-hosted biofilm communities in the continental deep subsurface, deep mine microbial observatory, SD, USA. Geobiology 18, 508–522 (2020).
pubmed: 32216092
doi: 10.1111/gbi.12391
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
pubmed: 27572647
doi: 10.1038/nmicrobiol.2016.48
Nelson, W. C. & Stegen, J. C. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front. Microbiol. 6, 713 (2015).
pubmed: 26257709
pmcid: 4508563
doi: 10.3389/fmicb.2015.00713
Kietäväinen, R. & Purkamo, L. The origin, source, and cycling of methane in deep crystalline rock biosphere. Front. Microbiol. 6, 725 (2015).
pubmed: 26236303
pmcid: 4505394
doi: 10.3389/fmicb.2015.00725
Schwank, K. et al. An archaeal symbiont-host association from the deep terrestrial subsurface. ISME J. 13, 2135–2139 (2019).
pubmed: 31048756
pmcid: 6776059
doi: 10.1038/s41396-019-0421-0
Herrmann, M. et al. Predominance of Cand. Patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions. Front. Microbiol. 10, 1407 (2019).
pubmed: 31281301
pmcid: 6596338
doi: 10.3389/fmicb.2019.01407
Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).
pubmed: 29379208
pmcid: 6792436
doi: 10.1038/s41564-017-0098-y
Lomstein, B. A., Langerhuus, A. T., D’Hondt, S., Jørgensen, B. B. & Spivack, A. J. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484, 101–104 (2012).
pubmed: 22425999
doi: 10.1038/nature10905
Walsh, E. A. et al. Bacterial diversity and community composition from seasurface to subseafloor. ISME J. 10, 979–989 (2016).
pubmed: 26430855
doi: 10.1038/ismej.2015.175
Nunoura, T. et al. Variance and potential niche separation of microbial communities in subseafloor sediments off Shimokita Peninsula, Japan. Environ. Microbiol. 18, 1889–1906 (2016).
pubmed: 26486095
doi: 10.1111/1462-2920.13096
Malinverno, A. & Martinez, E. A. The effect of temperature on organic carbon degradation in marine sediments. Sci. Rep. 5, 17861 (2015).
pubmed: 26640172
pmcid: 4671099
doi: 10.1038/srep17861
Starnawski, P. et al. Microbial community assembly and evolution in subseafloor sediment. Proc. Natl Acad. Sci. USA 114, 2940–2945 (2017).
Marshall, I. P. G. et al. Environmental filtering determines family-level structure of sulfate-reducing microbial communities in subsurface marine sediments. ISME J. 13, 1920–1932 (2019).
pubmed: 30894690
pmcid: 6658220
doi: 10.1038/s41396-019-0387-y
Kirkpatrick, J. B., Walsh, E. A. & D’Hondt, S. Microbial selection and survival in subseafloor sediment. Front. Microbiol. 10, 956 (2019).
pubmed: 31139156
pmcid: 6527604
doi: 10.3389/fmicb.2019.00956
Lindh, M. V. et al. Metapopulation theory identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to thousands of kilometers. Environ. Microbiol. 19, 1222–1236 (2017).
pubmed: 28028880
doi: 10.1111/1462-2920.13650
Broman, E. et al. Spring and late summer phytoplankton biomass impact on the coastal sediment microbial community structure. Microb. Ecol. 77, 288–303 (2019).
pubmed: 30019110
doi: 10.1007/s00248-018-1229-6
Broman, E., Sachpazidou, V., Pinhassi, J. & Dopson, M. Oxygenation of hypoxic coastal baltic sea sediments impacts on chemistry, microbial community composition, and metabolism. Front. Microbiol. 8, 2453 (2017).
pubmed: 29312168
pmcid: 5733055
doi: 10.3389/fmicb.2017.02453
Broman, E., Sjostedt, J., Pinhassi, J. & Dopson, M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5, 96 (2017).
pubmed: 28793929
pmcid: 5549381
doi: 10.1186/s40168-017-0311-5
Alakangas, L. J., Mathurin, F. A. & Åström, M. E. Diverse fractionation patterns of rare earth elements in deep fracture groundwater in the baltic shield–progress from utilisation of diffusive gradients in thin-films (DGT) at the Äspö Hard Rock Laboratory. Geochim. Cosmochim. Acta 269, 15–38 (2020).
doi: 10.1016/j.gca.2019.10.026
Drake, H., Åström, M. E., Tullborg, E.-L., Whitehouse, M. & Fallick, A. E. Variability of sulphur isotope ratios in pyrite and dissolved sulphate in granitoid fractures down to 1 km depth–evidence for widespread activity of sulphur reducing bacteria. Geochim. Cosmochim. Acta 102, 143–161 (2013).
doi: 10.1016/j.gca.2012.10.036
Drake, H., Tullborg, E.-L., Hogmalm, K. J. & Åström, M. E. Trace metal distribution and isotope variations in low-temperature calcite and groundwater in granitoid fractures down to 1 km depth. Geochim. Cosmochim. Acta 84, 217–238 (2012).
doi: 10.1016/j.gca.2012.01.039
Hubalek, V. et al. Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield. ISME J. 10, 2447–2458 (2016).
pubmed: 27022994
pmcid: 5030689
doi: 10.1038/ismej.2016.36
Laaksoharju, M. et al. Hydrogeochemical evaluation and modelling performed within the Swedish site investigation programme. Appl. Geochem. 23, 1761–1795 (2008).
doi: 10.1016/j.apgeochem.2008.02.015
Mathurin, F. A., Åström, M. E., Laaksoharju, M., Kalinowski, B. E. & Tullborg, E.-L. Effect of tunnel excavation on source and mixing of groundwater in a coastal granitoidic fracture network. Environ. Sci. Technol. 46, 12779–12786 (2012).
pubmed: 23088667
doi: 10.1021/es301722b
Laaksoharju, M., Gascoyne, M. & Gurban, I. Understanding groundwater chemistry using mixing models. Appl. Geochem. 23, 1921–1940 (2008).
doi: 10.1016/j.apgeochem.2008.02.018
Smellie, J. A. T., Laaksoharju, M. & Wikberg, P. Äspö, SE Sweden: a natural groundwater flow model derived from hydrogeochemical observations. J. Hydrol. 172, 147–169 (1995).
doi: 10.1016/0022-1694(95)02720-A
Mehrshad, M. et al. Energy efficiency and biological interactions define the core microbiome of deep oligotrophic groundwater. Nat. Commun. 12, 1–12 (2021).
doi: 10.1038/s41467-021-24549-z
Wu, X. et al. Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters. Microbiome 5, 37 (2017).
pubmed: 28335808
pmcid: 5364579
doi: 10.1186/s40168-017-0253-y
Banwart, S. et al. Organic carbon oxidation induced by large-scale shallow water intrusion into a vertical fracture zone at the Äspö Hard Rock Laboratory (Sweden). J. Contaminant Hydrol. 21, 115–125 (1996).
doi: 10.1016/0169-7722(95)00037-2
Louvat, D., Michelot, J. L. & Aranyossy, J. F. Origin and residence time of salinity in the Äspö groundwater system. Appl. Geochem. 14, 917–925 (1999).
doi: 10.1016/S0883-2927(99)00026-8
Tian, R. et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020).
pubmed: 32252814
pmcid: 7137472
doi: 10.1186/s40168-020-00825-w
Puente-Sánchez, F. et al. Viable cyanobacteria in the deep continental subsurface. Proc. Natl Acad. Sci. USA 115, 10702–10707 (2018).
Miettinen, H. et al. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland. Front. Microbiol. 6, 1203 (2015).
pubmed: 26579109
pmcid: 4626562
doi: 10.3389/fmicb.2015.01203
Hoshino, T. et al. Global diversity of microbial communities in marine sediment. Proc. Natl Acad. Sci. USA 117, 27587–27597 (2020).
Zhao, R., Hannisdal, B., Mogollon, J. M. & Jørgensen, S. L. Nitrifier abundance and diversity peak at deep redox transition zones. Sci. Rep. 9, 8633 (2019).
pubmed: 31201353
pmcid: 6572806
doi: 10.1038/s41598-019-44585-6
O’Malley, M. A. ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud. Hist. Philos. Sci. Part C: Stud. Hist. Philos. Biol. Biomed. Sci. 39, 314–325 (2008).
Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).
pubmed: 30181663
doi: 10.1038/s41579-018-0076-2
Pedersen, K. Subterranean microbial populations metabolize hydrogen and acetate under in situ conditions in granitic groundwater at 450 m depth in the Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol. Ecol. 81, 217–229 (2012).
pubmed: 22452510
doi: 10.1111/j.1574-6941.2012.01370.x
Pedersen, K. Metabolic activity of subterranean microbial communities in deep granitic groundwater supplemented with methane and H2. ISME J. 7, 839–849 (2013).
pubmed: 23235288
doi: 10.1038/ismej.2012.144
Rastogi, G. et al. Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former homestake gold mine, South Dakota. Microb. Ecol. 60, 539–550 (2010).
pubmed: 20386898
doi: 10.1007/s00248-010-9657-y
Bunse, C. et al. High frequency multi-year variability in Baltic Sea microbial plankton stocks and activities. Front. Microbiol. 9, 3296 (2019).
pubmed: 30705671
pmcid: 6345115
doi: 10.3389/fmicb.2018.03296
Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571 (2011).
pubmed: 21472016
pmcid: 3176514
doi: 10.1038/ismej.2011.41
Bunse, C. et al. Spatio-temporal interdependence of bacteria and phytoplankton during a Baltic Sea spring bloom. Front. Microbiol. 7, 517 (2016).
pubmed: 27148206
pmcid: 4838809
doi: 10.3389/fmicb.2016.00517
Hugerth, L. W. et al. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies. Appl. Environ. Microbiol. 80, 5116–5123 (2014).
pubmed: 24928874
pmcid: 4135748
doi: 10.1128/AEM.01403-14
Straub, D. et al. Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (Gene) amplicon sequencing pipeline. Front. Microbiol. 11, 2652 (2020).
doi: 10.3389/fmicb.2020.550420
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
pubmed: 27312411
pmcid: 5039924
doi: 10.1093/bioinformatics/btw354
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
pubmed: 31341288
pmcid: 7015180
doi: 10.1038/s41587-019-0209-9
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).
pubmed: 27214047
pmcid: 4927377
doi: 10.1038/nmeth.3869
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
pubmed: 23193283
pmcid: 3531112
doi: 10.1093/nar/gks1219
McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).
pubmed: 24699258
pmcid: 3974642
doi: 10.1371/journal.pcbi.1003531
Anderson, M. J. Distance‐based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
pubmed: 16542252
doi: 10.1111/j.1541-0420.2005.00440.x
Oksanen, J. et al. The vegan package. Community Ecol. package 10, 631–637 (2007).
Team, R. C. R: A language and environment for statistical computing. (2013).
Xie, Y. Dynamic Documents with R and knitr (Chapman and Hall/CRC, 2017).