Prenatal and postnatal chromosomal microarray analysis in 885 cases of various congenital heart defects.
Chromosomal microarray analysis
Congenital heart defects
Postnatal
Prenatal
Journal
Archives of gynecology and obstetrics
ISSN: 1432-0711
Titre abrégé: Arch Gynecol Obstet
Pays: Germany
ID NLM: 8710213
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
received:
16
07
2021
accepted:
06
12
2021
pubmed:
28
1
2022
medline:
16
9
2022
entrez:
27
1
2022
Statut:
ppublish
Résumé
This study aimed to evaluate the prevalence of clinically significant (pathogenic and likely pathogenic) variants detected by chromosomal microarray (CMA) tests performed for prenatally and postnatally detected congenital heart defects. A retrospective evaluation of CMA analyses over a period of four years in a single tertiary medical center was performed. Detection rate of clinically significant variants was calculated in the whole cohort, prenatal vs. postnatal cases, and isolated vs. non-isolated CHD. This rate was compared to previously published control cohorts, and to a theoretical detection rate of noninvasive prenatal testing (NIPS; 5 chromosomes). Of the 885 cases of CHD, 111 (12.5%) clinically significant variants were detected, with no significant difference between the 498 prenatal and the 387 postnatal cases (10.8% vs. 14.7%, p = 0.08). In both groups, the detection rate was significantly higher for non-isolated vs. isolated CHD (76/339 = 22.4% vs. 35/546 = 6.4%, respectively, p < 0.05). The detection rate was higher than the background risk in both groups, including cases of postnatal isolated CHD. 44% of abnormal findings in the prenatal setting would be detectable by NIPS. CMA should be performed for both prenatally and postnatally detected CHD, including postnatal cases of isolated CHD, while NIPS can be considered in specific scenarios.
Identifiants
pubmed: 35083553
doi: 10.1007/s00404-021-06366-3
pii: 10.1007/s00404-021-06366-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1007-1013Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Manning M, Hudgins L (2010) Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 12(11):742–745
doi: 10.1097/GIM.0b013e3181f8baad
Committee on Genetics and the Society for Maternal-Fetal Medicine, Vora NL, Romero ST, Ralston SJ, Dugoff L, Kuller JA (2016) Committee opinion no. 682: microarrays and next-generation sequencing technology: the use of advanced genetic diagnostic tools in obstetrics and gynecology. Obstetr Gynecol 128(6):e262–e268
doi: 10.1097/AOG.0000000000001817
Shaffer LG, Rosenfeld JA, Dabell MP, Coppinger J, Bandholz AM, Ellison JW et al (2012) Detection rates of clinically significant genomic alterations by microarray analysis for specific anomalies detected by ultrasound. Prenat Diagn 32(10):986–995
doi: 10.1002/pd.3943
Mademont-Soler I, Morales C, Soler A, Martínez-Crespo JM, Shen Y, Margarit E et al (2013) Prenatal diagnosis of chromosomal abnormalities in fetuses with abnormal cardiac ultrasound findings: evaluation of chromosomal microarray-based analysis. Ultrasound Obstetr Gynecol 41(4):375–382
doi: 10.1002/uog.12372
Yan Y, Wu Q, Zhang L, Wang X, Dan S, Deng D et al (2014) Detection of submicroscopic chromosomal aberrations by array-based comparative genomic hybridization in fetuses with congenital heart disease. Ultrasound Obstetr Gynecol 43(4):404–412
doi: 10.1002/uog.13236
Jansen FA, Blumenfeld YJ, Fisher A, Cobben JM, Odibo AO, Borrell A et al (2015) Array comparative genomic hybridization and fetal congenital heart defects: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45(1):27–35
doi: 10.1002/uog.14695
Zhu X, Li J, Ru T, Wang Y, Xu Y, Yang Y et al (2016) Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing. Prenat Diagn 36(4):321–327
doi: 10.1002/pd.4782
Sukenik-Halevy R, Sukenik S, Koifman A, Alpert Y, Hershkovitz R, Levi A et al (2016) Clinical aspects of prenatally detected congenital heart malformations and the yield of chromosomal microarray analysis. Prenat Diagn 36(13):1185–1191
doi: 10.1002/pd.4954
Sagi-Dain L, Maya I, Reches A, Frumkin A, Grinshpun-Cohen J, Segel R et al (2018) Chromosomal Microarray Analysis Results From Pregnancies With Various Ultrasonographic Anomalies. Obstet Gynecol 132(6):1368–1375
doi: 10.1097/AOG.0000000000002975
Breckpot J, Thienpont B, Peeters H, de Ravel T, Singer A, Rayyan M et al (2010) Array comparative genomic hybridization as a diagnostic tool for syndromic heart defects. J Pediatr 156(5):810–817 (7.e1–7.e4)
doi: 10.1016/j.jpeds.2009.11.049
Hitz MP, Lemieux-Perreault LP, Marshall C, Feroz-Zada Y, Davies R, Yang SW et al (2012) Rare copy number variants contribute to congenital left-sided heart disease. PLoS Genet 8(9):e1002903
doi: 10.1371/journal.pgen.1002903
Goldmuntz E, Paluru P, Glessner J, Hakonarson H, Biegel JA, White PS et al (2011) Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. Congenit Heart Dis 6(6):592–602
doi: 10.1111/j.1747-0803.2011.00582.x
Derwińska K, Bartnik M, Wiśniowiecka-Kowalnik B, Jagła M, Rudziński A, Pietrzyk JJ et al (2012) Assessment of the role of copy-number variants in 150 patients with congenital heart defects. Med Wieku Rozwoj 16(3):175–182
pubmed: 23378395
Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M et al (2012) Human gene copy number spectra analysis in congenital heart malformations. Physiol Genom 44(9):518–541
doi: 10.1152/physiolgenomics.00013.2012
Warburton D, Ronemus M, Kline J, Jobanputra V, Williams I, Anyane-Yeboa K et al (2014) The contribution of de novo and rare inherited copy number changes to congenital heart disease in an unselected sample of children with conotruncal defects or hypoplastic left heart disease. Hum Genet 133(1):11–27
doi: 10.1007/s00439-013-1353-9
Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A et al (2020) Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 22(2):245–257
doi: 10.1038/s41436-019-0686-8
Sagi-Dain L, Cohen Vig L, Kahana S, Yacobson S, Tenne T, Agmon-Fishman I et al (2019) Chromosomal microarray vs. NIPS: analysis of 5541 low-risk pregnancies. Genet Med 21:2462–2467
doi: 10.1038/s41436-019-0550-x
Srebniak MI, Joosten M, Knapen M, Arends LR, Polak M, van Veen S et al (2018) Frequency of submicroscopic chromosomal aberrations in pregnancies without increased risk for structural chromosomal aberrations: systematic review and meta-analysis. Ultrasound Obstetr Gynecol 51(4):445–452
doi: 10.1002/uog.17533
Hook EB (1981) Rates of chromosome abnormalities at different maternal ages. Obstet Gynecol 58(3):282–285
pubmed: 6455611
Qiao F, Wang Y, Zhang C, Zhou R, Wu Y, Wang C et al (2020) Comprehensive evaluation of genetic variants in fetuses with congenital heart defect using chromosomal microarray analysis and exome sequencing. Ultrasound Obstetr Gynecol
Geddes GC, Earing MG (2018) Genetic evaluation of patients with congenital heart disease. Curr Opin Pediatr 30(6):707–713
doi: 10.1097/MOP.0000000000000682
Botto LD, Lin AE, Riehle-Colarusso T, Malik S, Correa A (2007) Seeking causes: classifying and evaluating congenital heart defects in etiologic studies. Birth Defects Res A 79(10):714–727
doi: 10.1002/bdra.20403
Azhar M, Ware SM (2016) Genetic and developmental basis of cardiovascular malformations. Clin Perinatol 43(1):39–53
doi: 10.1016/j.clp.2015.11.002
Connor JA, Hinton RB, Miller EM, Sund KL, Ruschman JG, Ware SM (2014) Genetic testing practices in infants with congenital heart disease. Congenit Heart Dis 9(2):158–167
doi: 10.1111/chd.12112
Thiene G, Frescura C (2010) Anatomical and pathophysiological classification of congenital heart disease. Cardiovasc Pathol 19(5):259–274
doi: 10.1016/j.carpath.2010.02.006
Garne E, Olsen MS, Johnsen SP, Hjortdal V, Andersen H, Nissen H et al (2012) How do we define congenital heart defects for scientific studies? Congenit Heart Dis 7(1):46–49
doi: 10.1111/j.1747-0803.2011.00581.x
Turan S, Asoglu MR, Gabbay-Benziv R, Doyle L, Harman C, Turan OM (2018) Yield rate of chromosomal microarray analysis in fetuses with congenital heart defects. Eur J Obstet Gynecol Reprod Biol 221:172–176
doi: 10.1016/j.ejogrb.2017.12.019
Geng J, Picker J, Zheng Z, Zhang X, Wang J, Hisama F et al (2014) Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genom 15(1):1127
doi: 10.1186/1471-2164-15-1127
Wang Y, Cao L, Liang D, Meng L, Wu Y, Qiao F et al (2018) Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: a prospective cohort study. Am J Obstetr Gynecol. 218(2):244.e1-e17
doi: 10.1016/j.ajog.2017.10.225
van Nisselrooij AEL, Lugthart MA, Clur SA, Linskens IH, Pajkrt E, Rammeloo LA et al (2020) The prevalence of genetic diagnoses in fetuses with severe congenital heart defects. Genet Med 22(7):1206–1214
doi: 10.1038/s41436-020-0791-8
Hu P, Qiao F, Wang Y, Meng L, Ji X, Luo C et al (2018) Clinical application of targeted next-generation sequencing in fetuses with congenital heart defect. Ultrasound Obstetr Gynecol 52(2):205–211
doi: 10.1002/uog.19042
Xiao H, Huang R, Chen L, Diao M, Li L (2018) The Application of a shorter loop in Kasai Portoenterostomy reconstruction for Ohi Type III Biliary Atresia: a prospective randomized controlled trial. J Surg Res 232:492–496
doi: 10.1016/j.jss.2018.07.002
Ahrens-Nicklas RC, Khan S, Garbarini J, Woyciechowski S, D’Alessandro L, Zackai EH et al (2016) Utility of genetic evaluation in infants with congenital heart defects admitted to the cardiac intensive care unit. Am J Med Genet A 170(12):3090–3097
doi: 10.1002/ajmg.a.37891
Vedel C, Rode L, Jørgensen FS, Petersen OB, Sundberg K, Tabor A et al (2020) Prenatally detected isolated ventricular septum defects and the association with chromosomal aberrations—a nationwide register-based study from Denmark. Prenatal Diagnosis
Maya I, Singer A, Yonath H, Reches A, Rienstein S, Zeligson S et al (2020) What have we learned from 691 prenatal chromosomal microarrays for ventricular septal defects? Acta Obstet Gynecol Scand 99(6):757–764
doi: 10.1111/aogs.13708
Hanchard NA, Umana LA, D’Alessandro L, Azamian M, Poopola M, Morris SA et al (2017) Assessment of large copy number variants in patients with apparently isolated congenital left-sided cardiac lesions reveals clinically relevant genomic events. Am J Med Genet A 173(8):2176–2188
doi: 10.1002/ajmg.a.38309
Fahed AC, Gelb BD, Seidman JG, Seidman CE (2013) Genetics of congenital heart disease: the glass half empty. Circ Res 112(4):707–720
doi: 10.1161/CIRCRESAHA.112.300853
Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D et al (2012) Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 91(3):489–501
doi: 10.1016/j.ajhg.2012.08.003
Xia Y, Yang Y, Huang S, Wu Y, Li P, Zhuang J (2018) Clinical application of chromosomal microarray analysis for the prenatal diagnosis of chromosomal abnormalities and copy number variations in fetuses with congenital heart disease. Prenat Diagn 38(6):406–413
doi: 10.1002/pd.5249
Costain G, Silversides CK, Bassett AS (2016) The importance of copy number variation in congenital heart disease. NPJ Genom Med 1:16031
doi: 10.1038/npjgenmed.2016.31