Influence of codon optimization, promoter, and strain selection on the heterologous production of a β-fructofuranosidase from Aspergillus fijiensis ATCC 20611 in Pichia pastoris.


Journal

Folia microbiologica
ISSN: 1874-9356
Titre abrégé: Folia Microbiol (Praha)
Pays: United States
ID NLM: 0376757

Informations de publication

Date de publication:
Apr 2022
Historique:
received: 31 05 2021
accepted: 01 01 2022
pubmed: 9 2 2022
medline: 23 3 2022
entrez: 8 2 2022
Statut: ppublish

Résumé

Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by β-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis β-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt

Identifiants

pubmed: 35133569
doi: 10.1007/s12223-022-00947-8
pii: 10.1007/s12223-022-00947-8
doi:

Substances chimiques

Codon 0
Recombinant Proteins 0
beta-Fructofuranosidase EC 3.2.1.26

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

339-350

Informations de copyright

© 2022. Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i.

Références

Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317. https://doi.org/10.1007/s00253-014-5732-5
doi: 10.1007/s00253-014-5732-5 pubmed: 24743983 pmcid: 4047484
Ang RP, Teoh LS, Chan MK et al (2016) Comparing the expression of human DNA topoisomerase I in KM71H and X33 strains of Pichia pastoris. Electron J Biotechnol 21:9–17. https://doi.org/10.1016/j.ejbt.2016.01.007
doi: 10.1016/j.ejbt.2016.01.007
Ballou CE (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185:440–470
doi: 10.1016/0076-6879(90)85038-P
Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187. https://doi.org/10.1016/0076-6879(91)94015-5
doi: 10.1016/0076-6879(91)94015-5 pubmed: 2005786
Blanchard V, Gadkari RA, George AVE et al (2008) High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains — selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG. Glycoconj J 25:245–257. https://doi.org/10.1007/s10719-007-9082-8
doi: 10.1007/s10719-007-9082-8 pubmed: 18274893 pmcid: 2668595
Boël G, Letso R, Neely H et al (2016) Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 529:358–363. https://doi.org/10.1038/nature16509.Codon
doi: 10.1038/nature16509.Codon pubmed: 26760206 pmcid: 5054687
Boer H, Teeri TT, Koivula A (2000) Characterization of Trichoderma reesei cellobiohydrolase Cel7a secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 69:486–494. https://doi.org/10.1002/1097-0290(20000905)69:5%3c486::AID-BIT3%3e3.0.CO;2-N
doi: 10.1002/1097-0290(20000905)69:5<486::AID-BIT3>3.0.CO;2-N pubmed: 10898858
Buckholz RG, Gleeson MA (1991) Yeast systems for the commercial production of heterologous proteins. Nat Biotechnol 9:1067–1072. https://doi.org/10.1038/nbt1191-1067
doi: 10.1038/nbt1191-1067
Çelik E, Çalık P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30:1108–1118. https://doi.org/10.1016/j.biotechadv.2011.09.011
doi: 10.1016/j.biotechadv.2011.09.011 pubmed: 21964262
Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineenring and production. J Mol Recognit 18:119–138. https://doi.org/10.1002/jmr.687
doi: 10.1002/jmr.687 pubmed: 15565717
Del Sal G, Manfioletti G, Schneider C (1988) A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 16:9878. https://doi.org/10.1093/nar/16.20.9878
doi: 10.1093/nar/16.20.9878 pubmed: 3186460 pmcid: 338806
Delroisse JM, Dannau M, Gilsoul JJ et al (2005) Expression of a synthetic gene encoding a Tribolium castaneum carboxylesterase in Pichia pastoris. Protein Expr Purif 42:286–294. https://doi.org/10.1016/j.pep.2005.04.011
doi: 10.1016/j.pep.2005.04.011 pubmed: 15946860
Döring F, Klapper M, Theis S, Daniel H (1998) Use of the glyceraldehyde-3-phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast Pichia pastoris. Biochem Biophys Res Commun 250:531–535
Duman-Özdamar ZE, Binay B (2021) Production of industrial enzymes via Pichia pastoris as a cell factory in bioreactor: current status and future aspects. Protein J 40:367–376. https://doi.org/10.1007/s10930-021-09968-7
doi: 10.1007/s10930-021-09968-7 pubmed: 33587243
Duman ZE, Duraksoy BB, Aktaş F et al (2020) High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris. Enzyme Microb Technol 137:109552. https://doi.org/10.1016/j.enzmictec.2020.109552
doi: 10.1016/j.enzmictec.2020.109552 pubmed: 32423672
Flores-Maltos A, Mussatto SI, Contreras-Esquivel JC et al (2019) Production of a transfructosylating enzymatic activity associated to fructooligosaccharides. In: Parameswaran B, Varjani S, Raveendran S (eds) Green Bio-processes. Enzymes in Industrial Food Processing. Springer, Singapore 345–355
Gupta A, Rao G (2003) A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 84:351–358. https://doi.org/10.1002/bit.10740
doi: 10.1002/bit.10740 pubmed: 12968289
Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353. https://doi.org/10.1016/j.tibtech.2004.04.006
doi: 10.1016/j.tibtech.2004.04.006 pubmed: 15245907
Hernández L, Menéndez C, Pérez ER et al (2018) Fructooligosaccharides production by Schedonorus arundinaceus sucrose:sucrose 1-fructosyltransferase constitutively expressed to high levels in Pichia pastoris. J Biotechnol 266:59–71. https://doi.org/10.1016/j.jbiotec.2017.12.008
doi: 10.1016/j.jbiotec.2017.12.008 pubmed: 29246839
Hidaka H, Hirayama M, Sumi N (1988) A fructooligosaccharide-producing enzyme from Aspergillus niger ATCC 20611. Agric Biol Chem 52:1181–1187
Hirayama M, Sumi N, Hidaka H (1989) Purification and properties of a fructooligosaccharide-producing β-fructofuranosidase from Aspergillus niger ATCC 20611. Agric Biol Chem 53:667–673. https://doi.org/10.1271/bbb1961.53.667
doi: 10.1271/bbb1961.53.667
Hurley JM, Dunlap JC (2013) Cell biology: a fable of too much too fast. Nature 495:57–58. https://doi.org/10.1038/nature11952
doi: 10.1038/nature11952 pubmed: 23417066 pmcid: 3684399
Invitrogen Corporation (2002) Pichia fermentation process guidelines
Jedrzejczak-Krzepkowska M, Tkaczuk KL, Bielecki S (2011) Biosynthesis, purification and characterization of β-fructofuranosidase from Bifidobacterium longum KN29.1. Process Biochem 46:1963–1972. https://doi.org/10.1016/j.procbio.2011.07.005
doi: 10.1016/j.procbio.2011.07.005
Lee HS, Qi Y, Im W (2015) Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci Rep 5:8926. https://doi.org/10.1038/srep08926
doi: 10.1038/srep08926 pubmed: 25748215 pmcid: 4352867
Lu L, Wu J, Song D et al (2013) Purification of fructooligosaccharides by immobilized yeast cells and identification of ethyl β-D-fructofuranoside as a novel glycoside formed during the process. Bioresour Technol 132:365–369. https://doi.org/10.1016/j.biortech.2012.10.147
doi: 10.1016/j.biortech.2012.10.147 pubmed: 23186684
Maiorano AE, Piccoli RM, Da Silva ES, De Andrade Rodrigues MF (2008) Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnol Lett 30:1867–1877. https://doi.org/10.1007/s10529-008-9793-3
doi: 10.1007/s10529-008-9793-3 pubmed: 18612595
Menéndez C, Martínez D, Pérez ER et al (2019) Engineered thermostable β-fructosidase from Thermotoga maritima with enhanced fructooligosaccharides synthesis. Enzyme Microb Technol 125:53–62. https://doi.org/10.1016/j.enzmictec.2019.02.002
doi: 10.1016/j.enzmictec.2019.02.002 pubmed: 30885325
Nyblom M, Öberg F, Lindkvist-Petersson K et al (2007) Exceptional overproduction of a functional human membrane protein. Protein Expr Purif 56:110–120. https://doi.org/10.1016/j.pep.2007.07.007
doi: 10.1016/j.pep.2007.07.007 pubmed: 17869538
de Oliveira RL, da Silva MF, Converti A, Porto TS (2020) Production of β-fructofuranosidase with transfructosylating activity by Aspergillus tamarii URM4634 solid-state fermentation on agroindustrial by-products. Int J Biol Macromol 144:343–350. https://doi.org/10.1016/j.ijbiomac.2019.12.084
doi: 10.1016/j.ijbiomac.2019.12.084 pubmed: 31838073
Puigbò P, Bravo IG, Garcia-Vallvé S (2008) E-CAI: A novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics 9:1–7. https://doi.org/10.1186/1471-2105-9-65
doi: 10.1186/1471-2105-9-65
Rehm J, Willmitzer L, Heyer AG (1998) Production of 1-kestose in transgenic yeast expressing a fructosyltransferase from Aspergillus foetidus. J Bacteriol 180:1305–1310
doi: 10.1128/JB.180.5.1305-1310.1998
Roberfroid M, Gibson GR, Hoyles L et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:S1-63. https://doi.org/10.1017/S0007114510003363
doi: 10.1017/S0007114510003363 pubmed: 20920376
Saarelainen R, Paloheimo M, Fagerström R et al (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2. MGG Mol Gen Genet 241:497–503. https://doi.org/10.1007/BF00279891
doi: 10.1007/BF00279891 pubmed: 8264524
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York
Sharp PM, Li WH (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295. https://doi.org/10.1093/nar/15.3.1281
doi: 10.1093/nar/15.3.1281 pubmed: 3547335 pmcid: 340524
Sinclair G, Choy FYM (2002) Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr Purif 26:96–105. https://doi.org/10.1016/S1046-5928(02)00526-0
doi: 10.1016/S1046-5928(02)00526-0 pubmed: 12356476
Singh S, Gras A, Fiez-Vandal C et al (2008) Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures. Microb Cell Fact 7:1–10. https://doi.org/10.1186/1475-2859-7-28
doi: 10.1186/1475-2859-7-28
Singh SP, Jadaun JS, Narnoliya LK, Pandey A (2017) Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl Biochem Biotechnol 183:613–635. https://doi.org/10.1007/s12010-017-2605-2
doi: 10.1007/s12010-017-2605-2 pubmed: 28948462
Spohner SC, Czermak P (2016) Heterologous expression of Aspergillus terreus fructosyltransferase in Kluyveromyces lactis. N Biotechnol 33:473–479. https://doi.org/10.1016/j.nbt.2016.04.001
doi: 10.1016/j.nbt.2016.04.001 pubmed: 27084521
Trujillo LE, Arrieta JG, Dafhnis F et al (2001) Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris. Enzyme Microb Technol 28:139–144. https://doi.org/10.1016/S0141-0229(00)00290-8
doi: 10.1016/S0141-0229(00)00290-8 pubmed: 11166804
Tülek A, Karataş E, Çakar MM et al (2021) Optimisation of the production and bleaching process for a new laccase from Madurella mycetomatis, expressed in Pichia pastoris: from secretion to yielding prominent. Mol Biotechnol 63:24–39. https://doi.org/10.1007/s12033-020-00281-9
doi: 10.1007/s12033-020-00281-9 pubmed: 33058020
Van Hijum SAFT, Van Geel-Schutten GH, Rahaoui H et al (2002) Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl Environ Microbiol 68:4390–4398. https://doi.org/10.1128/AEM.68.9.4390-4398.2002
doi: 10.1128/AEM.68.9.4390-4398.2002 pubmed: 12200292 pmcid: 124061
van Wyk N, Trollope KM, Steenkamp ET et al (2013) Identification of the gene for β-fructofuranosidase from Ceratocystis moniliformis CMW 10134 and characterization of the enzyme expressed in Saccharomyces cerevisiae. BMC Biotechnol 13:100. https://doi.org/10.1186/1472-6750-13-100
doi: 10.1186/1472-6750-13-100 pubmed: 24225070 pmcid: 3880211
Vassileva A, Chugh DA, Swaminathan S, Khanna N (2001) Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter. J Biotechnol 88:21–35. https://doi.org/10.1016/S0168-1656(01)00254-1
doi: 10.1016/S0168-1656(01)00254-1 pubmed: 11377762
Vega-Paulino RJ, Zúniga-Hansen ME (2012) Potential application of commercial enzyme preparations for industrial production of short-chain fructooligosaccharides. J Mol Catal B Enzym 76:44–51. https://doi.org/10.1016/j.molcatb.2011.12.007
doi: 10.1016/j.molcatb.2011.12.007
Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol 30:385–404. https://doi.org/10.1016/j.nbt.2012.11.010
doi: 10.1016/j.nbt.2012.11.010 pubmed: 23165100
Werten MWT, Van Den Bosch TJ, Wind RD et al (1999) High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 15:1087–1096. https://doi.org/10.1002/(SICI)1097-0061(199908)15:11%3c1087::AID-YEA436%3e3.0.CO;2-F
doi: 10.1002/(SICI)1097-0061(199908)15:11<1087::AID-YEA436>3.0.CO;2-F pubmed: 10455232
Xu Q, Zheng X, Huang M et al (2015) Purification and biochemical characterization of a novel β-fructofuranosidase from Penicillium oxalicum with transfructosylating activity producing neokestose. Process Biochem 50:1237–1246. https://doi.org/10.1016/j.procbio.2015.04.020
doi: 10.1016/j.procbio.2015.04.020
Yanai K, Nakane A, Kawate A, Hirayama M (2001) Molecular cloning and characterization of the fructooligosaccharide-producing β-fructofuranosidase gene from Aspergillus niger ATCC 20611. Biosci Biotechnol Biochem 65:766–773
doi: 10.1271/bbb.65.766
Yang J, Liu L (2010) Codon optimization through a two-step gene synthesis leads to a high-level expression of Aspergillus niger lip2 gene in Pichia pastoris. J Mol Catal B Enzym 63:164–169. https://doi.org/10.1016/j.molcatb.2010.01.011
doi: 10.1016/j.molcatb.2010.01.011
Yang M, Yu XW, Zheng H et al (2015) Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris. Microb Cell Fact 14:40. https://doi.org/10.1186/s12934-015-0225-5
doi: 10.1186/s12934-015-0225-5 pubmed: 25880561 pmcid: 4417512
Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2007) Purification and some properties of beta-fructofuranosidase I formed by Aureobasidium pullulans DSM 2404. J Biosci Bioeng 103:491–493. https://doi.org/10.1263/jbb.103.491
doi: 10.1263/jbb.103.491 pubmed: 17609167
Zhang J, Liu C, Xie Y et al (2017) Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611. J Biotechnol 249:25–33. https://doi.org/10.1016/j.jbiotec.2017.03.021
doi: 10.1016/j.jbiotec.2017.03.021 pubmed: 28344156

Auteurs

Gerhardt Coetzee (G)

Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa. coetzeeg@sun.ac.za.

Jacques J Smith (JJ)

Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.

Johann F Görgens (JF)

Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Inclusion Bodies Solubility Recombinant Proteins Detergents Protein Denaturation
Saccharomyces cerevisiae Proteins Mitosis Saccharomyces cerevisiae Signal Transduction Spindle Pole Bodies

Classifications MeSH