Unanticipated daytime melatonin secretion on a simulated night shift schedule generates a distinctive 24-h melatonin rhythm with antiphasic daytime and nighttime peaks.
circadian pacemaker
glucose metabolism
melatonin
night shift
Journal
Journal of pineal research
ISSN: 1600-079X
Titre abrégé: J Pineal Res
Pays: England
ID NLM: 8504412
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
revised:
31
01
2022
received:
06
09
2021
accepted:
02
02
2022
pubmed:
9
2
2022
medline:
17
3
2022
entrez:
8
2
2022
Statut:
ppublish
Résumé
The daily rhythm of plasma melatonin concentrations is typically unimodal, with one broad peak during the circadian night and near-undetectable levels during the circadian day. Light at night acutely suppresses melatonin secretion and phase shifts its endogenous circadian rhythm. In contrast, exposure to darkness during the circadian day has not generally been reported to increase circulating melatonin concentrations acutely. Here, in a highly-controlled simulated night shift protocol with 12-h inverted behavioral/environmental cycles, we unexpectedly found that circulating melatonin levels were significantly increased during daytime sleep (p < .0001). This resulted in a secondary melatonin peak during the circadian day in addition to the primary peak during the circadian night, when sleep occurred during the circadian day following an overnight shift. This distinctive diurnal melatonin rhythm with antiphasic peaks could not be readily anticipated from the behavioral/environmental factors in the protocol (e.g., light exposure, posture, diet, activity) or from current mathematical model simulations of circadian pacemaker output. The observation, therefore, challenges our current understanding of underlying physiological mechanisms that regulate melatonin secretion. Interestingly, the increase in melatonin concentration observed during daytime sleep was positively correlated with the change in timing of melatonin nighttime peak (p = .002), but not with the degree of light-induced melatonin suppression during nighttime wakefulness (p = .92). Both the increase in daytime melatonin concentrations and the change in the timing of the nighttime peak became larger after repeated exposure to simulated night shifts (p = .002 and p = .006, respectively). Furthermore, we found that melatonin secretion during daytime sleep was positively associated with an increase in 24-h glucose and insulin levels during the night shift protocol (p = .014 and p = .027, respectively). Future studies are needed to elucidate the key factor(s) driving the unexpected daytime melatonin secretion and the melatonin rhythm with antiphasic peaks during shifted sleep/wake schedules, the underlying mechanisms of their relationship with glucose metabolism, and the relevance for diabetes risk among shift workers.
Identifiants
pubmed: 35133678
doi: 10.1111/jpi.12791
pmc: PMC8930611
mid: NIHMS1777547
doi:
Substances chimiques
Melatonin
JL5DK93RCL
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e12791Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK099512
Pays : United States
Organisme : BrightFocus Foundation
Organisme : NHLBI NIH HHS
ID : R01 HL118601
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG059867
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG064312
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK102696
Pays : United States
Organisme : NCRR NIH HHS
ID : UL1 RR025758
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL094806
Pays : United States
Organisme : NHLBI NIH HHS
ID : K99 HL148500
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK105072
Pays : United States
Informations de copyright
© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Curr Biol. 2017 Jun 19;27(12):1768-1775.e3
pubmed: 28578930
J Physiol. 2000 Aug 1;526 Pt 3:695-702
pubmed: 10922269
J Clin Endocrinol Metab. 2004 Jul;89(7):3610-4
pubmed: 15240654
Life Sci. 1978 Oct 16;23(15):1557-63
pubmed: 723434
Eur J Neurosci. 2000 Sep;12(9):3146-54
pubmed: 10998098
Clin Nutr. 2018 Aug;37(4):1133-1140
pubmed: 28455106
J Neurosci. 2005 Sep 28;25(39):9017-26
pubmed: 16192393
Eur J Neurosci. 2003 Jan;17(2):221-8
pubmed: 12542658
Sleep. 2007 Nov;30(11):1437-43
pubmed: 18041478
Neurosci Lett. 1994 Feb 14;167(1-2):191-4
pubmed: 8177523
Chronobiol Int. 2012 Nov;29(9):1206-15
pubmed: 23003567
Sleep. 2017 Jul 1;40(7):
pubmed: 28838129
Trends Endocrinol Metab. 2016 May;27(5):282-293
pubmed: 27079518
Experientia. 1973 Nov 15;29(11):1339-40
pubmed: 4761229
J Biol Rhythms. 1999 Dec;14(6):493-9
pubmed: 10643746
Nat Neurosci. 2003 Oct;6(10):1086-90
pubmed: 12958601
Sci Rep. 2018 Feb 14;8(1):3041
pubmed: 29445188
J Biol Rhythms. 1997 Dec;12(6):627-35
pubmed: 9406038
J Theor Biol. 1978 Feb 6;70(3):297-313
pubmed: 633922
J Biol Rhythms. 2005 Oct;20(5):419-29
pubmed: 16267381
Annu Rev Physiol. 2010;72:551-77
pubmed: 20148688
J Psychopharmacol. 2015 Jul;29(7):764-76
pubmed: 25922426
Bipolar Disord. 2015 May;17(3):303-14
pubmed: 25359533
J Pineal Res. 2007 Oct;43(3):294-304
pubmed: 17803528
J Biol Rhythms. 2001 Dec;16(6):552-63
pubmed: 11760013
Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23806-23812
pubmed: 31685618
Am J Physiol. 1997 Jul;273(1 Pt 2):R265-9
pubmed: 9249559
Am J Physiol. 1998 Jul;275(1):E48-54
pubmed: 9688873
Trends Endocrinol Metab. 2020 Mar;31(3):192-204
pubmed: 31901302
Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):E1402-11
pubmed: 26858430
Sleep. 2017 Apr 1;40(4):
pubmed: 28460138
J Pineal Res. 1998 May;24(4):219-23
pubmed: 9572531
Diabetes Obes Metab. 2018 Oct;20(10):2481-2485
pubmed: 29862620
Science. 2000 Oct 27;290(5492):799-801
pubmed: 11052942
J Neurosci. 2012 Nov 14;32(46):16193-202
pubmed: 23152603
Diabetologia. 2020 Mar;63(3):462-472
pubmed: 31915891
Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2730-9
pubmed: 27091961
Endocrinology. 1980 Nov;107(5):1525-9
pubmed: 7428680
Sci Rep. 2020 Oct 29;10(1):18614
pubmed: 33122670
Experientia. 1981 Jun;37(6):584-6
pubmed: 7196340
J Theor Biol. 1998 Jun 21;192(4):455-65
pubmed: 9680719
J Biol Rhythms. 2013 Feb;28(1):79-89
pubmed: 23382594
J Biol Rhythms. 2002 Apr;17(2):181-93
pubmed: 12002165
Nature. 1996 Feb 8;379(6565):540-2
pubmed: 8596632
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):E4355-61
pubmed: 24167276
Am J Physiol Regul Integr Comp Physiol. 2003 Mar;284(3):R714-24
pubmed: 12571075
Clin Endocrinol (Oxf). 2001 Mar;54(3):339-46
pubmed: 11298086
Nature. 1991 Mar 7;350(6313):59-62
pubmed: 2002845
J Physiol. 1999 Apr 15;516 ( Pt 2):611-27
pubmed: 10087357
Sleep. 2014 Oct 01;37(10):1715-9
pubmed: 25197811
Neurosci Lett. 1995 Jul 14;194(1-2):105-8
pubmed: 7478188
Mol Syst Biol. 2010 Nov 30;6:438
pubmed: 21119632
Science. 1989 Jun 16;244(4910):1328-33
pubmed: 2734611
Brain Res. 1981 Nov 2;223(2):313-23
pubmed: 7284813
PLoS Comput Biol. 2007 Apr 13;3(4):e68
pubmed: 17432930
J Pineal Res. 2018 May;64(4):e12474
pubmed: 29437238
Am J Physiol. 1997 Mar;272(3 Pt 1):E506-16
pubmed: 9124558
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2225-34
pubmed: 25870289
Int J Obes (Lond). 2019 Aug;43(8):1644-1649
pubmed: 30232416
Sleep. 1988 Aug;11(4):362-9
pubmed: 3206055
Front Hum Neurosci. 2018 Jan 10;11:648
pubmed: 29375345
J Neurosci. 2003 Jul 9;23(14):6141-51
pubmed: 12853433
Curr Biol. 2005 May 24;15(10):886-93
pubmed: 15916945
Sports Med. 2003;33(11):809-31
pubmed: 12959621
Sleep. 2006 May;29(5):609-18
pubmed: 16774150
Trends Neurosci. 2011 Jul;34(7):349-58
pubmed: 21665298
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12019-12024
pubmed: 31138694