An interactome analysis reveals that Arabidopsis thaliana GRDP2 interacts with proteins involved in post-transcriptional processes.

Bimolecular Fluorescence Complementation (BiFC) Glycine-rich domain protein Protein-protein interaction Subcellular localization

Journal

Cell stress & chaperones
ISSN: 1466-1268
Titre abrégé: Cell Stress Chaperones
Pays: Netherlands
ID NLM: 9610925

Informations de publication

Date de publication:
03 2021
Historique:
received: 09 12 2021
accepted: 03 02 2022
revised: 02 02 2022
pubmed: 18 2 2022
medline: 2 4 2022
entrez: 17 2 2022
Statut: ppublish

Résumé

The Arabidopsis thaliana glycine-rich domain protein 2 (AtGRDP2) gene encodes a protein of unknown function that is involved in plant growth and salt stress tolerance. The AtGRDP2 protein (787 aa, At4g37900) is constituted by three domains: a DUF1399 located at the N-terminus, a potential RNA Recognition Motif (RRM) in the central region, and a short glycine-rich domain at the C-terminus. Herein, we analyzed the subcellular localization of AtGRDP2 protein as a GFP translational fusion and found it was localized in the cytosol and the nucleus of tobacco leaf cells. Truncated versions of AtGRDP2 showed that the DUF1399 or the RRM domains were sufficient for nuclear localization. In addition, we performed a yeast two-hybrid split-ubiquitin assay (Y2H) to identify potential interactors for AtGRDP2 protein. The Y2H assay identified proteins associated with RNA binding functions such as PABN3 (At5g65260), EF-1α (At1g07920), and CL15 (At3g25920). Heterodimeric associations in planta between AtGRDP2 and its interactors were carried out by Bimolecular Fluorescence Complementation (BiFC) assays. The data revealed heterodimeric interactions between AtGRDP2 and PABN3 in the nucleus and AtGRDP2 with EF-1α in the cytosol, while AtGRDP2-CL15 associations occurred only in the chloroplasts. Finally, functional characterization of the protein-protein interaction regions revealed that both DUF1399 and RRM domains were key for heterodimerization with its interactors. The AtGRDP2 interaction with these proteins in different compartments suggests that this glycine-rich domain protein is involved in post-transcriptional processes.

Identifiants

pubmed: 35174430
doi: 10.1007/s12192-022-01261-5
pii: 10.1007/s12192-022-01261-5
pmc: PMC8943079
doi:

Substances chimiques

Arabidopsis Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

165-176

Informations de copyright

© 2022. The Author(s) under exclusive licence to Cell Stress Society International.

Références

Nat Protoc. 2007;2(1):31-4
pubmed: 17401334
Appl Biochem Biotechnol. 2005 Mar;120(3):169-74
pubmed: 15767691
BMC Genomics. 2012 Nov 20;13:641
pubmed: 23167306
Biochim Biophys Acta. 2000 Jun 21;1492(1):1-14
pubmed: 10858526
Nucleic Acids Res. 2007;35(2):506-16
pubmed: 17169986
Cell Stress Chaperones. 2013 Jul;18(4):517-25
pubmed: 23334891
PLoS One. 2012;7(10):e46907
pubmed: 23056524
Nucleic Acids Res. 2017 Jan 4;45(D1):D1064-D1074
pubmed: 27899614
J Biol Chem. 2009 Jan 2;284(1):478-485
pubmed: 19001369
Wiley Interdiscip Rev RNA. 2012 Jul-Aug;3(4):543-55
pubmed: 22555874
Nucleic Acids Res. 2008 Dec;36(22):6977-87
pubmed: 18987006
Nucleic Acids Res. 2002 Feb 1;30(3):623-35
pubmed: 11809873
Plant Signal Behav. 2010 Feb;5(2):99-104
pubmed: 20009520
New Phytol. 2019 Jan;221(2):850-865
pubmed: 30192000
Front Plant Sci. 2021 Oct 29;12:698487
pubmed: 34777406
J Exp Bot. 2021 Feb 2;72(2):608-622
pubmed: 32995857
Comp Biochem Physiol B Biochem Mol Biol. 2000 Feb;125(2):237-45
pubmed: 10817911
Biochem Biophys Res Commun. 2017 Apr 29;486(2):252-256
pubmed: 28285133
Front Plant Sci. 2015 Jan 20;5:782
pubmed: 25653657
Insect Biochem Mol Biol. 2006 Feb;36(2):99-110
pubmed: 16431278
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Nucleic Acids Res. 2001 Sep 1;29(17):3685-93
pubmed: 11522840

Auteurs

Saraí Castro-Bustos (S)

Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico.

Israel Maruri-López (I)

Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

María Azucena Ortega-Amaro (MA)

Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico.
Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, SLP, Mexico.

Mario Serrano (M)

Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.

Cesaré Ovando-Vázquez (C)

CONACyT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, A.C, San Luis Potosí, SLP, Mexico.

Juan Francisco Jiménez-Bremont (JF)

Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico. jbremont@ipicyt.edu.mx.

Articles similaires

Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant

Classifications MeSH