MicroRNA-122-5p Aggravates Angiotensin II-Mediated Myocardial Fibrosis and Dysfunction in Hypertensive Rats by Regulating the Elabela/Apelin-APJ and ACE2-GDF15-Porimin Signaling.
Elabela
Hypertension
Myocardial fibrosis
Oncosis
miR-122-5p
Journal
Journal of cardiovascular translational research
ISSN: 1937-5395
Titre abrégé: J Cardiovasc Transl Res
Pays: United States
ID NLM: 101468585
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
06
12
2021
accepted:
31
01
2022
pubmed:
18
2
2022
medline:
24
6
2022
entrez:
17
2
2022
Statut:
ppublish
Résumé
Hypertension is the leading risk factor for cardiovascular disorders. This study aimed to explore roles of microRNA (miR)-122-5p in hypertension. Angiotensin II (Ang II; 1.5 mg/kg/day) with an osmotic minipump was used to induce hypertensive rats pretreated by rAAV-miR-122-5p or rAAV-GFP, respectively. Notably, Ang II infusion caused marked increases in myocardial fibrosis, inflammation, oncosis, and oxidant injury in rats, which were aggravated by rAAV-miR-122-5p. RAAV-miR-122-5p exacerbated Ang II-mediated cardiac dysfunction and structural injury in hypertensive rats, with downregulated levels of apelin, elabela, ACE2, and GDF15, as well as upregulated expression of porimin and CTGF. In cultured rat cardiac fibroblasts, Ang II contributed to augmentation of cellular oncosis, migration, inflammation, and oxidative stress, with reduction of apelin, elabela, ACE2, and GDF15 levels, which were rescued by miR-122 inhibitor. In summary, miR-122-5p exacerbates myocardial fibrosis and dysfunction in hypertensive rats by modulating the elabela/apelin-ACE2-GDF15 signaling. MiR-122-5p has potential therapeutic significance for hypertension and hypertensive cardiac injury.
Identifiants
pubmed: 35174434
doi: 10.1007/s12265-022-10214-3
pii: 10.1007/s12265-022-10214-3
pmc: PMC8853151
doi:
Substances chimiques
Apelin
0
Gdf15 protein, rat
0
Growth Differentiation Factor 15
0
MIRN122 microRNA, rat
0
MicroRNAs
0
Angiotensin II
11128-99-7
Ace2 protein, rat
EC 3.4.17.23
Angiotensin-Converting Enzyme 2
EC 3.4.17.23
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
535-547Subventions
Organisme : National Natural Science Foundation of China
ID : 81770253
Organisme : National Natural Science Foundation of China
ID : 91849111
Organisme : National Natural Science Foundation of China
ID : 81370362
Organisme : National Natural Science Foundation of China
ID : 92168117
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Wang, Z., Chen, Z., Zhang, L., Wang, X., Hao, G., Zhang, Z., Shao, L., Tian, Y., Dong, Y., Zheng, C., Wang, J., Zhu, M., Weintraub, W. S., Gao, R., & China Hypertension Survey, I. (2018). Status of hypertension in China: Results from the China Hypertension Survey, 2012–2015. Circulation., 137, 2344–2356. https://doi.org/10.1161/CIRCULATIONAHA.117.032380
doi: 10.1161/CIRCULATIONAHA.117.032380
pubmed: 29449338
Gonzalez, A., Ravassa, S., Lopez, B., Moreno, M. U., Beaumont, J., San, Jose G., Querejeta, R., Bayes-Genis, A., & Diez, J. (2018). Myocardial remodeling in hypertension. Hypertension., 72, 549–558. https://doi.org/10.1161/HYPERTENSIONAHA.118.11125
doi: 10.1161/HYPERTENSIONAHA.118.11125
pubmed: 30354762
Arkoumani, M., Papadopoulou-Marketou, N., Nicolaides, N. C., Kanaka-Gantenbein, C., Tentolouris, N., & Papassotiriou, I. (2020). The clinical impact of growth differentiation factor-15 in heart disease: A 2019 update. Crit. Rev. Clin. Lab. Sci., 57, 114–125. https://doi.org/10.1080/10408363.2019.1678565
doi: 10.1080/10408363.2019.1678565
pubmed: 31663791
Adela, R., Mohammed, S. A., Kanwal, A., Vishwakarma, G., Chander Reddy, P. N., & Banerjee, S. K. (2016). Elevated levels of GDF-15 is associated with increased angiotensin II in hypertensive patients with type 2 diabetes. Per. Med., 13, 325–336. https://doi.org/10.2217/pme-2016-0030
doi: 10.2217/pme-2016-0030
pubmed: 29749818
Wang, J., Liu, S., Heallen, T., & Martin, J. F. (2018). The Hippo pathway in the heart: Pivotal roles in development, disease, and regeneration. Nat. Rev. Cardiol., 15, 672–684. https://doi.org/10.1038/s41569-018-0063-3
doi: 10.1038/s41569-018-0063-3
pubmed: 30111784
Niu, L., Jia, Y., Wu, M., Liu, H., Feng, Y., Hu, Y., Zhang, X., Gao, D., Xu, F., & Huang, G. (2020). Matrix stiffness controls cardiac fibroblast activation through regulating YAP via AT1 R. J. Cell. Physiol., 235, 8345–8357. https://doi.org/10.1002/jcp.29678
doi: 10.1002/jcp.29678
pubmed: 32239716
Francisco, J., Zhang, Y., Jeong, J. I., Mizushima, W., Ikeda, S., Ivessa, A., Oka, S., Zhai, P., Tallquist, M. D., & Del Re, D. P. (2020). Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF-A inhibition. JACC Basic Transl Sci., 5, 931–945. https://doi.org/10.1016/j.jacbts.2020.07.009
doi: 10.1016/j.jacbts.2020.07.009
pubmed: 33015415
pmcid: 7524792
Liu, Y., Song, J. W., Lin, J. Y., Miao, R., & Zhong, J. C. (2020). Roles of microrna-122 in cardiovascular fibrosis and related diseases. Cardiovasc. Toxicol., 20, 463–473. https://doi.org/10.1007/s12012-020-09603-4
doi: 10.1007/s12012-020-09603-4
pubmed: 32856216
pmcid: 7451782
Weber, G. J., Purkayastha, B., Ren, L., Pushpakumar, S., & Sen, U. (2018). Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging. J. Hypertens., 36, 2226–2236. https://doi.org/10.1097/HJH.0000000000001770
doi: 10.1097/HJH.0000000000001770
pubmed: 30256768
Song, J. J., Yang, M., Liu, Y., Song, J. W., Wang, J., Chi, H. J., Liu, X. Y., Zuo, K., Yang, X. C., & Zhong, J. C. (2020). MicroRNA-122 aggravates angiotensin II-mediated apoptosis and autophagy imbalance in rat aortic adventitial fibroblasts via the modulation of SIRT6-elabela-ACE2 signaling. Eur. J. Pharmacol., 883, 173374. https://doi.org/10.1016/j.ejphar.2020.173374
doi: 10.1016/j.ejphar.2020.173374
pubmed: 32682786
pmcid: 7364171
Sato, T., Suzuki, T., Watanabe, H., Kadowaki, A., Fukamizu, A., Liu, P. P., Kimura, A., Ito, H., Penninger, J. M., Imai, Y., & Kuba, K. (2013). Apelin is a positive regulator of ACE2 in failing hearts. J. Clin. Invest., 123, 5203–11. https://doi.org/10.1172/JCI69608
doi: 10.1172/JCI69608
pubmed: 24177423
pmcid: 3859384
Xu, R., Zhang, Z. Z., Chen, L. J., Yu, H. M., Guo, S. J., Xu, Y. L., Oudit, G. Y., Zhang, Y., Chang, Q., Song, B., Chen, D. R., Zhu, D. L., & Zhong, J. C. (2016). Ascending aortic adventitial remodeling and fibrosis are ameliorated with Apelin-13 in rats after TAC via suppression of the miRNA-122 and LGR4-beta-catenin signaling. Peptides., 86, 85–94. https://doi.org/10.1016/j.peptides.2016.10.005
doi: 10.1016/j.peptides.2016.10.005
pubmed: 27773659
Song J.W., Tang J.Q., Zhang Z.Z., Liu Y.&Zhong J.C. (2021) Targeting the elabela/apelin-apelin receptor axis as a novel therapeutic approach for hypertension. Chin. Med. J. (Engl.). https://doi.org/10.1097/cm9.0000000000001766
Zhang, Z. Z., Wang, W., Jin, H. Y., Chen, X., Cheng, Y. W., Xu, Y. L., Song, B., Penninger, J. M., Oudit, G. Y., & Zhong, J. C. (2017). Apelin Is a negative regulator of angiotensin II-mediated adverse myocardial remodeling and dysfunction. Hypertension., 70, 1165–1175. https://doi.org/10.1161/HYPERTENSIONAHA.117.10156
doi: 10.1161/HYPERTENSIONAHA.117.10156
pubmed: 28974565
D’Arcy, M. S. (2019). Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 43, 582–592. https://doi.org/10.1002/cbin.11137
doi: 10.1002/cbin.11137
pubmed: 30958602
Hein, S., Arnon, E., Kostin, S., Schonburg, M., Elsasser, A., Polyakova, V., Bauer, E. P., Klovekorn, W. P., & Schaper, J. (2003). Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: Structural deterioration and compensatory mechanisms. Circulation., 107, 984–91. https://doi.org/10.1161/01.cir.0000051865.66123.b7
doi: 10.1161/01.cir.0000051865.66123.b7
pubmed: 12600911
Ricci, M. S., & Zong, W. X. (2006). Chemotherapeutic approaches for targeting cell death pathways. Oncologist., 11, 342–57. https://doi.org/10.1634/theoncologist.11-4-342
doi: 10.1634/theoncologist.11-4-342
pubmed: 16614230
Du, J. H., Zhang, H. D., Ma, Z. J., & Ji, K. M. (2010). Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo. Cancer Chemother. Pharmacol., 65, 895–902. https://doi.org/10.1007/s00280-009-1095-5
doi: 10.1007/s00280-009-1095-5
pubmed: 19690861
Chu, J., Ji, H., Lu, M., Li, Z., Qiao, X., Sun, B., Zhang, W., & Xue, D. (2013). Proteomic analysis of apoptotic and oncotic pancreatic acinar AR42J cells treated with caerulein. Mol. Cell. Biochem., 382, 1–17. https://doi.org/10.1007/s11010-013-1603-0
doi: 10.1007/s11010-013-1603-0
pubmed: 23884867
Chen, B., Lu, D., Fu, Y., Zhang, J., Huang, X., Cao, S., Xu, D., Bin, J., Kitakaze, M., Huang, Q., & Liao, Y. (2014). Olmesartan prevents cardiac rupture in mice with myocardial infarction by modulating growth differentiation factor 15 and p53. Br. J. Pharmacol., 171, 3741–53. https://doi.org/10.1111/bph.12736
doi: 10.1111/bph.12736
pubmed: 24749959
pmcid: 4128070
Patel, V. B., Zhong, J. C., Grant, M. B., & Oudit, G. Y. (2016). Role of the ACE2/angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circ. Res., 118, 1313–26. https://doi.org/10.1161/CIRCRESAHA.116.307708
doi: 10.1161/CIRCRESAHA.116.307708
pubmed: 27081112
pmcid: 4939482
Wu, P., Liu, Z., Zhao, T., Xia, F., Gong, L., Zheng, Z., Chen, Z., Yang, T., & Duan, Q. (2019). Lovastatin attenuates angiotensin II induced cardiovascular fibrosis through the suppression of YAP/TAZ signaling. Biochem. Biophys. Res. Commun., 512, 736–741. https://doi.org/10.1016/j.bbrc.2019.03.158
doi: 10.1016/j.bbrc.2019.03.158
pubmed: 30926167
Lin, M., Yuan, W., Su, Z., Lin, C., Huang, T., Chen, Y., & Wang, J. (2018). Yes-associated protein mediates angiotensin II-induced vascular smooth muscle cell phenotypic modulation and hypertensive vascular remodelling. Cell Prolif., 51, e12517. https://doi.org/10.1111/cpr.12517
doi: 10.1111/cpr.12517
pubmed: 30156340
pmcid: 6528929
Heger, J., Schiegnitz, E., von Waldthausen, D., Anwar, M. M., Piper, H. M., & Euler, G. (2010). Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes. J. Cell. Physiol., 224, 120–6. https://doi.org/10.1002/jcp.22102
doi: 10.1002/jcp.22102
pubmed: 20232299
Piek, A., de Boer, R. A., & Sillje, H. H. (2016). The fibrosis-cell death axis in heart failure. Heart Fail. Rev., 21, 199–211. https://doi.org/10.1007/s10741-016-9536-9
doi: 10.1007/s10741-016-9536-9
pubmed: 26883434
pmcid: 4762920