Versatile Near-Infrared Super-Resolution Imaging of Amyloid Fibrils with the Fluorogenic Probe CRANAD-2.

amyloid fibrils curcumin derivatives exchangeable fluorophore. single-molecule localization microscopy stimulated emission depletion microscopy super-resolution imaging transient binding

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
01 Apr 2022
Historique:
received: 04 01 2022
pubmed: 19 2 2022
medline: 6 4 2022
entrez: 18 2 2022
Statut: ppublish

Résumé

CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45-55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.

Identifiants

pubmed: 35178798
doi: 10.1002/chem.202200026
doi:

Substances chimiques

Amyloid 0
Fluorescent Dyes 0
Curcumin IT942ZTH98

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202200026

Subventions

Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : PCI2018-093064, PGC2018-094802-B-I00
Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : SEV-2016-0686
Organisme : Comunidad de Madrid
ID : S2017/BMD-3867

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

F. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2017, 86, 27-68.
P. A. Adlard, B. A. Tran, D. I. Finkelstein, P. M. Desmond, L. A. Johnston, A. I. Bush, G. F. Egan, Front. Neurol. Neurosci. 2014, 8, 327-349.
Z. Luo, H. Xu, L. Liu, T. Y. Ohulchanskyy, J. Qu, Biosensors 2021, 11, 255-273.
J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, H. R. Saibil, Proc. Natl. Acad. Sci. USA 2002, 99, 9196-9201.
S. W. Hell, J. Wichmann, Opt. Lett. 1994, 19, 780-782.
E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, Science 2006, 313, 1642-1645.
M. J. Rust, M. Bates, X. Zhuang, Nat. Methods 2006, 3, 793-795.
C. Werner, M. Sauer, C. Geis, Chem. Rev. 2021, 121, 11971-12015.
G. Vicidomini, P. Bianchini, A. Diaspro, Nat. Methods 2018, 15, 173-182.
M. Lelek, M. T. Gyparaki, G. Beliu, F. Schueder, J. Griffié, S. Manley, R. Jungmann, M. Sauer, M. Lakadamyali, C. Zimmer, Nat. Rev. Methods Primers 2021, 1, 39-65.
A. Aliyan, N. P. Cook, A. A. Martí, Chem. Rev. 2019, 119, 11819-11856.
C. F. Kaminski, G. S. Kaminski Schierle, Neurophotonics 2016, 3, 041807-041815.
M. Lu, C. F. Kaminski, G. S. Kaminski Schierle, Phys. Biol. 2020, 17, 021001-021013.
J. Torra, P. Bondia, S. Gutierrez-Erlandsson, B. Sot, C. Flors, Nanoscale 2020, 12, 15050-15053.
Z. Lv, L. Li, Z. Man, Z. Xu, H. Cui, R. Zhan, Q. He, L. Zheng, H. Fu, Nano Res. 2020, 13, 2556-2563.
H. A. Shaban, C. A. Valades-Cruz, J. Savatier, S. Brasselet, Sci. Rep. 2017, 7, 12482-12491.
K. Spehar, T. Ding, Y. Sun, N. Kedia, J. Lu, G. R. Nahass, M. D. Lew, J. Bieschke, ChemBioChem 2018, 19, 1944-1948.
J.-E. Lee, J. C. Sang, M. Rodrigues, A. R. Carr, M. H. Horrocks, S. De, M. N. Bongiovanni, P. Flagmeier, C. M. Dobson, D. J. Wales, S. F. Lee, D. Klenerman, Nano Lett. 2018, 18, 7494-7501.
L.-M. Needham, J. Weber, C. M. Pearson, D. T. Do, F. Gorka, G. Lyu, S. E. Bohndiek, T. N. Snaddon, S. F. Lee, J. Phys. Chem. Lett. 2020, 11, 8406-8416.
L.-M. Needham, J. Weber, J. A. Varela, J. W. B. Fyfe, D. T. Do, C. K. Xu, L. Tutton, R. Cliffe, B. Keenlyside, D. Klenerman, C. M. Dobson, C. A. Hunter, K. H. Müller, K. O'Holleran, S. E. Bohndiek, T. N. Snaddon, S. F. Lee, Chem. Sci. 2020, 11, 4578-4583.
C. Ran, X. Xu, S. B. Raymond, B. J. Ferrara, K. Neal, B. J. Bacskai, Z. Medarova, A. Moore, J. Am. Chem. Soc. 2009, 131, 15257-15261.
C. Peng, X. Wang, Y. Li, H. W. Li, M. S. Wong, J. Mater. Chem. B 2019, 7, 1986-1995.
J. Yang, F. Zeng, Y. Ge, K. Peng, X. Li, Y. Li, Y. Xu, Bioconjugate Chem. 2020, 31, 2-15.
B. Sot, A. Rubio-Muñoz, A. Leal-Quintero, J. Martínez-Sabando, M. Marcilla, C. Roodveldt, J. M. Valpuesta, Sci. Rep. 2017, 7, 40859-40870.
P. Bondia, J. Torra, C. M. Tone, T. Sawazaki, A. del Valle, B. Sot, S. Nonell, M. Kanai, Y. Sohma, C. Flors, J. Am. Chem. Soc. 2020, 142, 922-930.
R. Ni, A. Villois, X. L. Dean-Ben, Z. Chen, M. Vaas, S. Stavrakis, G. Shi, A. DeMello, C. Ran, D. Razansky, P. Arosio, J. Klohs, Photoacoustics 2021, 23, 100285-100296.
C. Spahn, J. B. Grimm, L. D. Lavis, M. Lampe, M. Heilemann, Nano Lett. 2019, 19, 500-505.
C. Spahn, F. Hurter, M. Glaesmann, C. Karathanasis, M. Lampe, M. Heilemann, Angew. Chem. Int. Ed. 2019, 58, 18835-18838;
Angew. Chem. 2019, 131, 19011-19014.
M. M. Perfilov, A. S. Gavrikov, K. A. Lukyanov, A. S. Mishin, Int. J. Mol. Sci. 2021, 22, 11799-11816.
R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, M. Sauer, Small 2010, 6, 1379-1384.
A. Sharonov, R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 2006, 103, 18911-18916.
N. Banterle, K. H. Bui, E. A. Lemke, M. Beck, J. Struct. Biol. 2013, 183, 363-367.
A. Monserrate, S. Casado, C. Flors, ChemPhysChem 2014, 15, 647-650.
P. Bondia, R. Jurado, S. Casado, J. M. Domínguez-Vera, N. Gálvez, C. Flors, Small 2017, 13, 1603784-1603790.
P. Bondia, S. Casado, C. Flors, Methods Mol. Biol. 2017, 1663, 105-113.
M. Cosentino, C. Canale, P. Bianchini, A. Diaspro, Sci. Adv. 2019, 5, eaav8062.
H. Mazidi, T. Ding, A. Nehorai, M. D. Lew, Nat. Commun. 2020, 11, 6353-6363.
M. Glogger, C. Spahn, J. Enderlein, M. Heilemann, Angew. Chem. 2021, 133, 6380-6383;
Angew. Chem. Int. Ed. 2021, 60, 6310-6313.
H. Liu, J. H. Naismith, BMC Biotechnol. 2008, 8, 91-100.
R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, B. Rieger, Nat. Methods 2013, 10, 557-562.

Auteurs

Joaquim Torra (J)

Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Madrid, 28049, Spain.

Felipe Viela (F)

Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Madrid, 28049, Spain.

Diego Megías (D)

Confocal Microscopy Unit; Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain.

Begoña Sot (B)

Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Madrid, 28049, Spain.
Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA), Madrid, 28049, Spain.

Cristina Flors (C)

Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Madrid, 28049, Spain.
Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA), Madrid, 28049, Spain.

Articles similaires

alpha-Synuclein Humans Animals Mice Lewy Body Disease
Curcumin Spinal Cord Injuries Humans Animals Neural Stem Cells

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Molecular probes for tracking lipid droplet membrane dynamics.

Lingxiu Kong, Qingjie Bai, Cuicui Li et al.
1.00
Lipid Droplets Molecular Probes Humans Membrane Proteins Animals

Classifications MeSH