Multi-parameter photon-by-photon hidden Markov modeling.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
22 02 2022
22 02 2022
Historique:
received:
15
04
2021
accepted:
03
02
2022
entrez:
23
2
2022
pubmed:
24
2
2022
medline:
13
4
2022
Statut:
epublish
Résumé
Single molecule Förster resonance energy transfer (smFRET) is a unique biophysical approach for studying conformational dynamics in biomacromolecules. Photon-by-photon hidden Markov modeling (H
Identifiants
pubmed: 35194038
doi: 10.1038/s41467-022-28632-x
pii: 10.1038/s41467-022-28632-x
pmc: PMC8863987
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1000Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM130942
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Lerner, E. et al. Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer. Science 359, eaan1133 (2018).
pubmed: 29348210
pmcid: 6200918
doi: 10.1126/science.aan1133
Lerner, E. et al. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 10, e60416 (2021).
pubmed: 33779550
pmcid: 8007216
doi: 10.7554/eLife.60416
Schuler, B. & Hofmann, H. Single-molecule spectroscopy of protein folding dynamics-expanding scope and timescales. Curr. Opin. Struct. Biol. 23, 36–47 (2013).
pubmed: 23312353
doi: 10.1016/j.sbi.2012.10.008
Aviram, H. Y. et al. Direct observation of ultrafast large-scale dynamics of an enzyme under turnover conditions. Proc. Natl. Acad. Sci. 115, 3243–3248 (2018).
pubmed: 29531052
pmcid: 5879700
doi: 10.1073/pnas.1720448115
Mazal, H. & Haran, G. Single-molecule FRET methods to study the dynamics of proteins at work. Curr. Opin. Biomed. Eng. 12, 8–17 (2019).
pubmed: 31989063
pmcid: 6984960
doi: 10.1016/j.cobme.2019.08.007
Robb, N. C. et al. The transcription bubble of the RNA polymerase - promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: implications for transcription start-site selection. J. Mol. Biol. 425, 875–885 (2013).
pubmed: 23274143
doi: 10.1016/j.jmb.2012.12.015
Lerner, E., Ingargiola, A. & Weiss, S. Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example. J. Chem. Phys. 148, 123315 (2018).
pubmed: 29604842
pmcid: 5750056
doi: 10.1063/1.5004606
Cristóvão, M. et al. Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA. Nucleic Acids Res. 40, 5448–5464 (2012).
pubmed: 22367846
pmcid: 3384296
doi: 10.1093/nar/gks138
Fessl, T. et al. Dynamic action of the Sec machinery during initiation, protein translocation and termination. eLIFE 7, e35112 (2018).
pubmed: 29877797
pmcid: 6021171
doi: 10.7554/eLife.35112
Calabrese, A. N. et al. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nat. Commun. 11, 2155 (2020).
pubmed: 32358557
pmcid: 7195389
doi: 10.1038/s41467-020-15702-1
Mazal, H. et al. Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nat. Commun. 10, 1438 (2019).
pubmed: 30926805
pmcid: 6440998
doi: 10.1038/s41467-019-09474-6
Zhao, Y. et al. Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465, 188–193 (2010).
pubmed: 20463731
pmcid: 2940119
doi: 10.1038/nature09057
Zhao, Y. et al. Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature 474, 109–113 (2011).
pubmed: 21516104
pmcid: 3178346
doi: 10.1038/nature09971
Erkens, G. B., Hänelt, I., Goudsmits, J. M. H., Slotboom, D. J. & van Oijen, A. M. Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502, 119–123 (2013).
pubmed: 24091978
doi: 10.1038/nature12538
Gouridis, G. et al. Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ. Nat. Struct. Mol. Biol. 22, 57–64 (2015).
pubmed: 25486304
doi: 10.1038/nsmb.2929
Husada, F. et al. Conformational dynamics of the ABC transporter McjD seen by single-molecule FRET. EMBO J. 37, 1–13 (2018).
doi: 10.15252/embj.2018100056
de Boer, M. et al. Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers. eLIFE 8, e44652 (2019).
pubmed: 30900991
pmcid: 6450668
doi: 10.7554/eLife.44652
Anthis, N. J. & Clore, G. M. Visualizing transient dark states by NMR spectroscopy. Q. Rev. Biophysics. 48, 35–116 (2015).
doi: 10.1017/S0033583514000122
Clore, G. M. & Iwahara, J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem. Rev. 109, 4108–4139 (2009).
pubmed: 19522502
pmcid: 2825090
doi: 10.1021/cr900033p
Palmer, A. G. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 104, 3623–3640 (2004).
pubmed: 15303831
doi: 10.1021/cr030413t
Ravera, E. et al. Insights into domain-domain motions in proteins and RNA from solution NMR. Acc. Chem. Res. 47, 3118–3126 (2014).
pubmed: 25148413
pmcid: 4204921
doi: 10.1021/ar5002318
Su, Q. P. & Ju, L. A. Biophysical nanotools for single-molecule dynamics. Biophysical Rev. 10, 1349–1357 (2018).
doi: 10.1007/s12551-018-0447-y
Bavishi, K. & Hatzakis, N. Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules 19, 19407–19434 (2014).
pubmed: 25429564
pmcid: 6272019
doi: 10.3390/molecules191219407
Medina, E., R. Latham, D. & Sanabria, H. Unraveling protein’s structural dynamics: from configurational dynamics to ensemble switching guides functional mesoscale assemblies. Curr. Opin. Struct. Biol. 66, 129–138 (2021).
pubmed: 33246199
doi: 10.1016/j.sbi.2020.10.016
Mandal, S. S. Force spectroscopy on single molecules of life. ACS Omega. 5, 11271–11278 (2020).
pubmed: 32478214
pmcid: 7254507
doi: 10.1021/acsomega.0c00814
Dimura, M. et al. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 40, 163–185 (2016).
pubmed: 27939973
doi: 10.1016/j.sbi.2016.11.012
Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. 93, 6264–6268 (1996).
pubmed: 8692803
pmcid: 39010
doi: 10.1073/pnas.93.13.6264
Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. der Phys. 437, 55–75 (1948).
doi: 10.1002/andp.19484370105
Förster, T. 10th spiers memorial lecture. transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7 (1959).
doi: 10.1039/DF9592700007
Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. 58, 719–726 (1967).
pubmed: 5233469
pmcid: 335693
doi: 10.1073/pnas.58.2.719
Dahan, M. et al. Ratiometric measurement and identification of single diffusing molecules. Chem. Phys. 247, 85–106 (1999).
doi: 10.1016/S0301-0104(99)00132-9
Deniz, A. A. et al. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of Forster distance dependence and subpopulations. Proc. Natl Acad. Sci. 96, 3670–3675 (1999).
pubmed: 10097095
pmcid: 22352
doi: 10.1073/pnas.96.7.3670
Lee, N. K. et al. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophysical J. 88, 2939–2953 (2005).
doi: 10.1529/biophysj.104.054114
Rothwell, P. J. et al. Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes. Proc. Natl Acad. Sci. 100, 1655–1660 (2003).
pubmed: 12578980
pmcid: 149888
doi: 10.1073/pnas.0434003100
Aviram, M., Felekyan, S., Gaiduk, A. & Seidel, C. A. Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J. Phys. Chem. B 110, 6970–6978 (2006).
doi: 10.1021/jp057257+
Nir, E. et al. Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J. Phys. Chem. B 110, 22103–22124 (2006).
pubmed: 17078646
pmcid: 3085016
doi: 10.1021/jp063483n
Kalinin, S., Felekyan, S., Antonik, M. & Seidel, C. A. Probability distribution analysis of single-molecule fluorescence anisotropy and resonance energy transfer. J. Phys. Chem. B 111, 10253–10262 (2007).
pubmed: 17676789
doi: 10.1021/jp072293p
Kalinin, S., Felekyan, S., Valeri, A. & Seidel, C. A. Characterizing multiple molecular states in single-molecule multiparameter fluorescence detection by probability distribution analysis. J. Phys. Chem. B 112, 8361–8374 (2008).
pubmed: 18570393
doi: 10.1021/jp711942q
Kalinin, S., Valeri, A., Antonik, M., Felekyan, S. & Seidel, C. A. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J. Phys. Chem. B 114, 7983–7995 (2010).
pubmed: 20486698
doi: 10.1021/jp102156t
Santoso, Y., Torella, J. P. & Kapanidis, A. N. Characterizing single-molecule FRET dynamics with probability distribution analysis. ChemPhysChem 11, 2209–2219. (2010).
doi: 10.1002/cphc.201000129
Torella, J. P., Holden, S. J., Santoso, Y., Hohlbein, J. & Kapanidis, A. N. Identifying molecular dynamics in single-molecule fret experiments with burst variance analysis. Biophysical J. 100, 1568–1577 (2011).
doi: 10.1016/j.bpj.2011.01.066
Tomov, T. E. et al. Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis. Biophysical J. 102, 1163–1173 (2012).
doi: 10.1016/j.bpj.2011.11.4025
Sisamakis, E., Valeri, A., Kalinin, S., Rothwell, P. J. & Seidel, C. A. Accurate single-molecule FRET studies using multiparameter fluorescence detection. In Methods in Enzymology, vol. 475, 455-514 (Elsevier Inc., 2010), 1 edn. https://doi.org/10.1016/S0076-6879(10)75018-7 https://linkinghub.elsevier.com/retrieve/pii/S0076687910750187 .
Barth, A. et al. Unraveling multi-state molecular dynamics in single-molecule FRET experiments- Part I: Theory of FRET-Lines (2021). http://arxiv.org/abs/2107.14770 .
Magde, D., Elson, E. & Webb, W. Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705 (1972).
doi: 10.1103/PhysRevLett.29.705
Rigler, R.et al. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. In: Accounts of Chemical Research 22.10 (3 Oct. 1993), pp. 169–175. https://doi.org/10.1007/BF00185777
Widengren, J., Schweinberger, E., Berger, S. & Seidel, C. A. Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J. Phys. Chem. A 105, 6851–6866 (2001).
doi: 10.1021/jp010301a
Torres, T. & Levitus, M. Measuring conformational dynamics: a new FCS-FRET approach. J. Phys. Chem. B 111, 7392–7400 (2007).
pubmed: 17547447
doi: 10.1021/jp070659s
Gurunathan, K. & Levitus, M. FRET fluctuation spectroscopy of diffusing biopolymers: contributions of conformational dynamics and translational diffusion. J. Phys. Chem. B 114, 980–986 (2010).
pubmed: 20030305
pmcid: 2810209
doi: 10.1021/jp907390n
Köllner, M. & Wolfrum, J. How many photons are necessary for fluorescence-lifetime measurements? Chem. Phys. Lett. 200, 199–204 (1992).
doi: 10.1016/0009-2614(92)87068-Z
Zander, C. et al. Detection and characterization of single molecules in aqueous solution. Appl. Phys. B 63, 517–523 (1996).
doi: 10.1007/s003400050118
Maus, M. et al. An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal. Chem. 73, 2078–2086 (2001).
pubmed: 11354494
doi: 10.1021/ac000877g
Nettels, D., Gopich, I. V., Hoffmann, A. A. & Schuler, B. Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc. Natl Acad. Sci. 104, 2655–2660 (2007).
pubmed: 17301233
pmcid: 1815237
doi: 10.1073/pnas.0611093104
Chung, H. S., McHale, K., Louis, J. M. & Eaton, W. A. Single-molecule fluorescence experiments determine protein folding transition path times. Science. 335, 981–984 (2012).
pubmed: 22363011
doi: 10.1126/science.1215768
Keller, B. G., Kobitski, A., Jäschke, A., Nienhaus, U. G. & Noé, F. Complex RNA folding kinetics revealed by single-molecule FRET and hidden markov models. J. Am. Chem. Soc. 136, 4534–4543 (2014).
pubmed: 24568646
pmcid: 3977575
doi: 10.1021/ja4098719
Pirchi, M. et al. Photon-by-photon hidden markov model analysis for microsecond single-molecule FRET kinetics. J. Phys. Chem. B 120, 13065–13075 (2016).
pubmed: 27977207
doi: 10.1021/acs.jpcb.6b10726
Gopich, I. V. & Szabo, A. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc. Natl Acad. Sci. 109, 7747–7752 (2012).
pubmed: 22550169
pmcid: 3356627
doi: 10.1073/pnas.1205120109
Ingargiola, A., Weiss, S. & Lerner, E. Monte carlo diffusion-enhanced photon inference: distance distributions and conformational dynamics in single-molecule FRET. J. Phys. Chem. B 122, 11598–11615 (2018).
pubmed: 30252475
doi: 10.1021/acs.jpcb.8b07608
Gopich, I. V. & Szabo, A. Decoding the pattern of photon colors in single-molecule FRET. J. Phys. Chem. B 113, 10965–10973 (2009).
pubmed: 19588948
pmcid: 2802060
doi: 10.1021/jp903671p
Müller, B. K., Zaychikov, E., Bräuchle, C. & Lamb, D. C. Pulsed interleaved excitation. Biophysical J. 89, 3508–3522 (2005).
doi: 10.1529/biophysj.105.064766
Laurence, T. A., Kong, X., Jager, M. & Weiss, S. Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proc. Natl Acad. Sci. 102, 17348–17353 (2005).
pubmed: 16287971
pmcid: 1297681
doi: 10.1073/pnas.0508584102
Hohng, S., Joo, C. & Ha, T. Single-molecule three-color FRET. Biophysical J. 87, 1328–1337 (2004).
doi: 10.1529/biophysj.104.043935
Clamme, J.-P. & Deniz, A. A. Three-color single-molecule fluorescence resonance energy transfer. ChemPhysChem 6, 74–77 (2005).
pubmed: 15688649
doi: 10.1002/cphc.200400261
Lee, N. K., Koh, H. R. & Kim, S. K. Folding of 8-17 deoxyribozyme studied by three-color alternating-laser excitation of single molecules. J. Am. Chem. Soc. 129, 15526–15534 (2007).
pubmed: 18027936
doi: 10.1021/ja0725145
Lee, N. K. et al. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophysical J. 92, 303–312 (2007).
doi: 10.1529/biophysj.106.093211
Lee, S., Lee, J. & Hohng, S. Single-molecule three-color FRET with both negligible spectral overlap and long observation time. PLoS One 5, e12270 (2010).
pubmed: 20808851
pmcid: 2924373
doi: 10.1371/journal.pone.0012270
Stein, I. H., Steinhauser, C. & Tinnefeld, P. Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. J. Am. Chem. Soc. 133, 719–726 (2011).
doi: 10.1021/ja1105464
Yim, S. W. et al. Four-color alternating-laser excitation single-molecule fluorescence spectroscopy for next-generation biodetection assays. Clin. Chem. 58, 707–716 (2012).
pubmed: 22266381
pmcid: 5742282
doi: 10.1373/clinchem.2011.176958
Ratzke, C., Hellenkamp, B. & Hugel, T. Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery. Nat. Commun. 5, 4192 (2014).
pubmed: 24947016
doi: 10.1038/ncomms5192
Tsukanov, R., Tomov, T. E., Berger, Y., Liber, M. & Nir, E. Conformational dynamics of DNA hairpins at millisecond resolution obtained from analysis of single-molecule FRET histograms. J. Phys. Chem. B 117, 16105–16109 (2013).
pubmed: 24261629
doi: 10.1021/jp411280n
Peter, M. F. et al. Studying conformational changes of the yersinia Type-III-secretion effector YopO in solution by integrative structural biology. Structure 27, 1416–1426 (2019).
doi: 10.1016/j.str.2019.06.007
Harris, P. D. et al. Multi-parameter photon-by-photon hidden markov modeling dataset. https://zenodo.org/record/5902313 (2021).
Harris, P. D., Hamdan, S. M. & Habuchi, S. Relative contributions of base stacking and electrostatic repulsion on DNA nicks and gaps. J. Phys. Chem. B 124, 10663–10672 (2020).
pubmed: 33179916
doi: 10.1021/acs.jpcb.0c06941
Biernacki, C., Celeux, G. & Govaert, G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725 (2000).
doi: 10.1109/34.865189
Celeux, G. & Durand, J.-B. Selecting hidden Markov model state number with cross-validated likelihood. Computational Stat. 23, 541–564 (2008).
doi: 10.1007/s00180-007-0097-1
Harris, P. D. H2MMpythonlib: simulated models (2021). https://zenodo.org/record/5535302 .
Mächtel, R., Narducci, A., Griffith, D. A., Cordes, T. & Orelle, C. An integrated transport mechanism of the maltose ABC importer. Res. Microbiol. 170, 321–337 (2019).
pubmed: 31560984
pmcid: 6906923
doi: 10.1016/j.resmic.2019.09.004
Kim, E. et al. A single-molecule dissection of ligand binding to a protein with intrinsic dynamics. Nat. Chem. Biol. 9, 313–318 (2013).
Ingargiola, A. Applying corrections in single-molecule FRET. bioRxiv083287 (2017). https://www.biorxiv.org/content/early/2017/02/01/083287 .
Zickus, V. et al. Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation. Sci. Rep. 10, 20986 (2020).
pubmed: 33268900
pmcid: 7710711
doi: 10.1038/s41598-020-77737-0
Harris, P. D. Fretbursts development version (2021). https://github.com/harripd/FRETBursts/tree/polarization .
Cao, A.-M. et al. Allosteric modulators enhance agonist efficacy by increasing the residence time of a GPCR in the active state. Nat. Commun. 12, 5426 (2021).
pubmed: 34521824
pmcid: 8440590
doi: 10.1038/s41467-021-25620-5
Harris, P. D. H2mm tutorial (2021). https://doi.org/10.5281/zenodo.5566886 .
Peter, M. F. et al. Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. bioRxiv 2020.11.23.394080 (2020). http://biorxiv.org/content/early/2020/11/23/2020.11.23.394080.abstract .
Ingargiola, A., Laurence, T., Boutelle, R., Weiss, S. & Michalet, X. Photon-HDF5. Biophysical J. 110, 25–33 (2016).
doi: 10.1016/j.bpj.2015.11.013
Gebhardt, C. et al. Molecular and spectroscopic characterization of green and red cyanine fluorophores from the alexa fluor and AF series. ChemPhysChem 22, 1566–1583 (2021).
pubmed: 34185946
pmcid: 8457111
doi: 10.1002/cphc.202000935
Ingargiola, A. et al. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules. PLoS One 12, e0175766 (2017).
pubmed: 28419142
pmcid: 5395192
doi: 10.1371/journal.pone.0175766
Ingargiola, A., Lerner, E., Chung, S. Y., Weiss, S. & Michalet, X. FRETBursts: An open source toolkit for analysis of freely-diffusing Single-molecule FRET. PLoS ONE 11, 1–27 (2016).
doi: 10.1371/journal.pone.0160716
Ingargiola, A. FOpenSMFS/PyBroMo: Version 0.8.1. zenodo.org (2019).
Hagai, D. & Lerner, E. Systematic assessment of burst impurity in confocal-based single-molecule fluorescence detection using Brownian motion simulations. In: Molecules24 (2019) ISSN: 14203049. https://doi.org/10.3390/molecules24142557 .