Multi-parameter photon-by-photon hidden Markov modeling.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 02 2022
Historique:
received: 15 04 2021
accepted: 03 02 2022
entrez: 23 2 2022
pubmed: 24 2 2022
medline: 13 4 2022
Statut: epublish

Résumé

Single molecule Förster resonance energy transfer (smFRET) is a unique biophysical approach for studying conformational dynamics in biomacromolecules. Photon-by-photon hidden Markov modeling (H

Identifiants

pubmed: 35194038
doi: 10.1038/s41467-022-28632-x
pii: 10.1038/s41467-022-28632-x
pmc: PMC8863987
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1000

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM130942
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Lerner, E. et al. Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer. Science 359, eaan1133 (2018).
pubmed: 29348210 pmcid: 6200918 doi: 10.1126/science.aan1133
Lerner, E. et al. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 10, e60416 (2021).
pubmed: 33779550 pmcid: 8007216 doi: 10.7554/eLife.60416
Schuler, B. & Hofmann, H. Single-molecule spectroscopy of protein folding dynamics-expanding scope and timescales. Curr. Opin. Struct. Biol. 23, 36–47 (2013).
pubmed: 23312353 doi: 10.1016/j.sbi.2012.10.008
Aviram, H. Y. et al. Direct observation of ultrafast large-scale dynamics of an enzyme under turnover conditions. Proc. Natl. Acad. Sci. 115, 3243–3248 (2018).
pubmed: 29531052 pmcid: 5879700 doi: 10.1073/pnas.1720448115
Mazal, H. & Haran, G. Single-molecule FRET methods to study the dynamics of proteins at work. Curr. Opin. Biomed. Eng. 12, 8–17 (2019).
pubmed: 31989063 pmcid: 6984960 doi: 10.1016/j.cobme.2019.08.007
Robb, N. C. et al. The transcription bubble of the RNA polymerase - promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: implications for transcription start-site selection. J. Mol. Biol. 425, 875–885 (2013).
pubmed: 23274143 doi: 10.1016/j.jmb.2012.12.015
Lerner, E., Ingargiola, A. & Weiss, S. Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example. J. Chem. Phys. 148, 123315 (2018).
pubmed: 29604842 pmcid: 5750056 doi: 10.1063/1.5004606
Cristóvão, M. et al. Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA. Nucleic Acids Res. 40, 5448–5464 (2012).
pubmed: 22367846 pmcid: 3384296 doi: 10.1093/nar/gks138
Fessl, T. et al. Dynamic action of the Sec machinery during initiation, protein translocation and termination. eLIFE 7, e35112 (2018).
pubmed: 29877797 pmcid: 6021171 doi: 10.7554/eLife.35112
Calabrese, A. N. et al. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nat. Commun. 11, 2155 (2020).
pubmed: 32358557 pmcid: 7195389 doi: 10.1038/s41467-020-15702-1
Mazal, H. et al. Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nat. Commun. 10, 1438 (2019).
pubmed: 30926805 pmcid: 6440998 doi: 10.1038/s41467-019-09474-6
Zhao, Y. et al. Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465, 188–193 (2010).
pubmed: 20463731 pmcid: 2940119 doi: 10.1038/nature09057
Zhao, Y. et al. Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature 474, 109–113 (2011).
pubmed: 21516104 pmcid: 3178346 doi: 10.1038/nature09971
Erkens, G. B., Hänelt, I., Goudsmits, J. M. H., Slotboom, D. J. & van Oijen, A. M. Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502, 119–123 (2013).
pubmed: 24091978 doi: 10.1038/nature12538
Gouridis, G. et al. Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ. Nat. Struct. Mol. Biol. 22, 57–64 (2015).
pubmed: 25486304 doi: 10.1038/nsmb.2929
Husada, F. et al. Conformational dynamics of the ABC transporter McjD seen by single-molecule FRET. EMBO J. 37, 1–13 (2018).
doi: 10.15252/embj.2018100056
de Boer, M. et al. Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers. eLIFE 8, e44652 (2019).
pubmed: 30900991 pmcid: 6450668 doi: 10.7554/eLife.44652
Anthis, N. J. & Clore, G. M. Visualizing transient dark states by NMR spectroscopy. Q. Rev. Biophysics. 48, 35–116 (2015).
doi: 10.1017/S0033583514000122
Clore, G. M. & Iwahara, J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem. Rev. 109, 4108–4139 (2009).
pubmed: 19522502 pmcid: 2825090 doi: 10.1021/cr900033p
Palmer, A. G. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 104, 3623–3640 (2004).
pubmed: 15303831 doi: 10.1021/cr030413t
Ravera, E. et al. Insights into domain-domain motions in proteins and RNA from solution NMR. Acc. Chem. Res. 47, 3118–3126 (2014).
pubmed: 25148413 pmcid: 4204921 doi: 10.1021/ar5002318
Su, Q. P. & Ju, L. A. Biophysical nanotools for single-molecule dynamics. Biophysical Rev. 10, 1349–1357 (2018).
doi: 10.1007/s12551-018-0447-y
Bavishi, K. & Hatzakis, N. Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules 19, 19407–19434 (2014).
pubmed: 25429564 pmcid: 6272019 doi: 10.3390/molecules191219407
Medina, E., R. Latham, D. & Sanabria, H. Unraveling protein’s structural dynamics: from configurational dynamics to ensemble switching guides functional mesoscale assemblies. Curr. Opin. Struct. Biol. 66, 129–138 (2021).
pubmed: 33246199 doi: 10.1016/j.sbi.2020.10.016
Mandal, S. S. Force spectroscopy on single molecules of life. ACS Omega. 5, 11271–11278 (2020).
pubmed: 32478214 pmcid: 7254507 doi: 10.1021/acsomega.0c00814
Dimura, M. et al. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 40, 163–185 (2016).
pubmed: 27939973 doi: 10.1016/j.sbi.2016.11.012
Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. 93, 6264–6268 (1996).
pubmed: 8692803 pmcid: 39010 doi: 10.1073/pnas.93.13.6264
Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. der Phys. 437, 55–75 (1948).
doi: 10.1002/andp.19484370105
Förster, T. 10th spiers memorial lecture. transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7 (1959).
doi: 10.1039/DF9592700007
Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. 58, 719–726 (1967).
pubmed: 5233469 pmcid: 335693 doi: 10.1073/pnas.58.2.719
Dahan, M. et al. Ratiometric measurement and identification of single diffusing molecules. Chem. Phys. 247, 85–106 (1999).
doi: 10.1016/S0301-0104(99)00132-9
Deniz, A. A. et al. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of Forster distance dependence and subpopulations. Proc. Natl Acad. Sci. 96, 3670–3675 (1999).
pubmed: 10097095 pmcid: 22352 doi: 10.1073/pnas.96.7.3670
Lee, N. K. et al. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophysical J. 88, 2939–2953 (2005).
doi: 10.1529/biophysj.104.054114
Rothwell, P. J. et al. Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes. Proc. Natl Acad. Sci. 100, 1655–1660 (2003).
pubmed: 12578980 pmcid: 149888 doi: 10.1073/pnas.0434003100
Aviram, M., Felekyan, S., Gaiduk, A. & Seidel, C. A. Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J. Phys. Chem. B 110, 6970–6978 (2006).
doi: 10.1021/jp057257+
Nir, E. et al. Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J. Phys. Chem. B 110, 22103–22124 (2006).
pubmed: 17078646 pmcid: 3085016 doi: 10.1021/jp063483n
Kalinin, S., Felekyan, S., Antonik, M. & Seidel, C. A. Probability distribution analysis of single-molecule fluorescence anisotropy and resonance energy transfer. J. Phys. Chem. B 111, 10253–10262 (2007).
pubmed: 17676789 doi: 10.1021/jp072293p
Kalinin, S., Felekyan, S., Valeri, A. & Seidel, C. A. Characterizing multiple molecular states in single-molecule multiparameter fluorescence detection by probability distribution analysis. J. Phys. Chem. B 112, 8361–8374 (2008).
pubmed: 18570393 doi: 10.1021/jp711942q
Kalinin, S., Valeri, A., Antonik, M., Felekyan, S. & Seidel, C. A. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J. Phys. Chem. B 114, 7983–7995 (2010).
pubmed: 20486698 doi: 10.1021/jp102156t
Santoso, Y., Torella, J. P. & Kapanidis, A. N. Characterizing single-molecule FRET dynamics with probability distribution analysis. ChemPhysChem 11, 2209–2219. (2010).
doi: 10.1002/cphc.201000129
Torella, J. P., Holden, S. J., Santoso, Y., Hohlbein, J. & Kapanidis, A. N. Identifying molecular dynamics in single-molecule fret experiments with burst variance analysis. Biophysical J. 100, 1568–1577 (2011).
doi: 10.1016/j.bpj.2011.01.066
Tomov, T. E. et al. Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis. Biophysical J. 102, 1163–1173 (2012).
doi: 10.1016/j.bpj.2011.11.4025
Sisamakis, E., Valeri, A., Kalinin, S., Rothwell, P. J. & Seidel, C. A. Accurate single-molecule FRET studies using multiparameter fluorescence detection. In Methods in Enzymology, vol. 475, 455-514 (Elsevier Inc., 2010), 1 edn. https://doi.org/10.1016/S0076-6879(10)75018-7 https://linkinghub.elsevier.com/retrieve/pii/S0076687910750187 .
Barth, A. et al. Unraveling multi-state molecular dynamics in single-molecule FRET experiments- Part I: Theory of FRET-Lines (2021). http://arxiv.org/abs/2107.14770 .
Magde, D., Elson, E. & Webb, W. Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705 (1972).
doi: 10.1103/PhysRevLett.29.705
Rigler, R.et al. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. In: Accounts of Chemical Research 22.10 (3 Oct. 1993), pp. 169–175. https://doi.org/10.1007/BF00185777
Widengren, J., Schweinberger, E., Berger, S. & Seidel, C. A. Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J. Phys. Chem. A 105, 6851–6866 (2001).
doi: 10.1021/jp010301a
Torres, T. & Levitus, M. Measuring conformational dynamics: a new FCS-FRET approach. J. Phys. Chem. B 111, 7392–7400 (2007).
pubmed: 17547447 doi: 10.1021/jp070659s
Gurunathan, K. & Levitus, M. FRET fluctuation spectroscopy of diffusing biopolymers: contributions of conformational dynamics and translational diffusion. J. Phys. Chem. B 114, 980–986 (2010).
pubmed: 20030305 pmcid: 2810209 doi: 10.1021/jp907390n
Köllner, M. & Wolfrum, J. How many photons are necessary for fluorescence-lifetime measurements? Chem. Phys. Lett. 200, 199–204 (1992).
doi: 10.1016/0009-2614(92)87068-Z
Zander, C. et al. Detection and characterization of single molecules in aqueous solution. Appl. Phys. B 63, 517–523 (1996).
doi: 10.1007/s003400050118
Maus, M. et al. An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal. Chem. 73, 2078–2086 (2001).
pubmed: 11354494 doi: 10.1021/ac000877g
Nettels, D., Gopich, I. V., Hoffmann, A. A. & Schuler, B. Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc. Natl Acad. Sci. 104, 2655–2660 (2007).
pubmed: 17301233 pmcid: 1815237 doi: 10.1073/pnas.0611093104
Chung, H. S., McHale, K., Louis, J. M. & Eaton, W. A. Single-molecule fluorescence experiments determine protein folding transition path times. Science. 335, 981–984 (2012).
pubmed: 22363011 doi: 10.1126/science.1215768
Keller, B. G., Kobitski, A., Jäschke, A., Nienhaus, U. G. & Noé, F. Complex RNA folding kinetics revealed by single-molecule FRET and hidden markov models. J. Am. Chem. Soc. 136, 4534–4543 (2014).
pubmed: 24568646 pmcid: 3977575 doi: 10.1021/ja4098719
Pirchi, M. et al. Photon-by-photon hidden markov model analysis for microsecond single-molecule FRET kinetics. J. Phys. Chem. B 120, 13065–13075 (2016).
pubmed: 27977207 doi: 10.1021/acs.jpcb.6b10726
Gopich, I. V. & Szabo, A. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc. Natl Acad. Sci. 109, 7747–7752 (2012).
pubmed: 22550169 pmcid: 3356627 doi: 10.1073/pnas.1205120109
Ingargiola, A., Weiss, S. & Lerner, E. Monte carlo diffusion-enhanced photon inference: distance distributions and conformational dynamics in single-molecule FRET. J. Phys. Chem. B 122, 11598–11615 (2018).
pubmed: 30252475 doi: 10.1021/acs.jpcb.8b07608
Gopich, I. V. & Szabo, A. Decoding the pattern of photon colors in single-molecule FRET. J. Phys. Chem. B 113, 10965–10973 (2009).
pubmed: 19588948 pmcid: 2802060 doi: 10.1021/jp903671p
Müller, B. K., Zaychikov, E., Bräuchle, C. & Lamb, D. C. Pulsed interleaved excitation. Biophysical J. 89, 3508–3522 (2005).
doi: 10.1529/biophysj.105.064766
Laurence, T. A., Kong, X., Jager, M. & Weiss, S. Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proc. Natl Acad. Sci. 102, 17348–17353 (2005).
pubmed: 16287971 pmcid: 1297681 doi: 10.1073/pnas.0508584102
Hohng, S., Joo, C. & Ha, T. Single-molecule three-color FRET. Biophysical J. 87, 1328–1337 (2004).
doi: 10.1529/biophysj.104.043935
Clamme, J.-P. & Deniz, A. A. Three-color single-molecule fluorescence resonance energy transfer. ChemPhysChem 6, 74–77 (2005).
pubmed: 15688649 doi: 10.1002/cphc.200400261
Lee, N. K., Koh, H. R. & Kim, S. K. Folding of 8-17 deoxyribozyme studied by three-color alternating-laser excitation of single molecules. J. Am. Chem. Soc. 129, 15526–15534 (2007).
pubmed: 18027936 doi: 10.1021/ja0725145
Lee, N. K. et al. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophysical J. 92, 303–312 (2007).
doi: 10.1529/biophysj.106.093211
Lee, S., Lee, J. & Hohng, S. Single-molecule three-color FRET with both negligible spectral overlap and long observation time. PLoS One 5, e12270 (2010).
pubmed: 20808851 pmcid: 2924373 doi: 10.1371/journal.pone.0012270
Stein, I. H., Steinhauser, C. & Tinnefeld, P. Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. J. Am. Chem. Soc. 133, 719–726 (2011).
doi: 10.1021/ja1105464
Yim, S. W. et al. Four-color alternating-laser excitation single-molecule fluorescence spectroscopy for next-generation biodetection assays. Clin. Chem. 58, 707–716 (2012).
pubmed: 22266381 pmcid: 5742282 doi: 10.1373/clinchem.2011.176958
Ratzke, C., Hellenkamp, B. & Hugel, T. Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery. Nat. Commun. 5, 4192 (2014).
pubmed: 24947016 doi: 10.1038/ncomms5192
Tsukanov, R., Tomov, T. E., Berger, Y., Liber, M. & Nir, E. Conformational dynamics of DNA hairpins at millisecond resolution obtained from analysis of single-molecule FRET histograms. J. Phys. Chem. B 117, 16105–16109 (2013).
pubmed: 24261629 doi: 10.1021/jp411280n
Peter, M. F. et al. Studying conformational changes of the yersinia Type-III-secretion effector YopO in solution by integrative structural biology. Structure 27, 1416–1426 (2019).
doi: 10.1016/j.str.2019.06.007
Harris, P. D. et al. Multi-parameter photon-by-photon hidden markov modeling dataset. https://zenodo.org/record/5902313 (2021).
Harris, P. D., Hamdan, S. M. & Habuchi, S. Relative contributions of base stacking and electrostatic repulsion on DNA nicks and gaps. J. Phys. Chem. B 124, 10663–10672 (2020).
pubmed: 33179916 doi: 10.1021/acs.jpcb.0c06941
Biernacki, C., Celeux, G. & Govaert, G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725 (2000).
doi: 10.1109/34.865189
Celeux, G. & Durand, J.-B. Selecting hidden Markov model state number with cross-validated likelihood. Computational Stat. 23, 541–564 (2008).
doi: 10.1007/s00180-007-0097-1
Harris, P. D. H2MMpythonlib: simulated models (2021). https://zenodo.org/record/5535302 .
Mächtel, R., Narducci, A., Griffith, D. A., Cordes, T. & Orelle, C. An integrated transport mechanism of the maltose ABC importer. Res. Microbiol. 170, 321–337 (2019).
pubmed: 31560984 pmcid: 6906923 doi: 10.1016/j.resmic.2019.09.004
Kim, E. et al. A single-molecule dissection of ligand binding to a protein with intrinsic dynamics. Nat. Chem. Biol. 9, 313–318 (2013).
Ingargiola, A. Applying corrections in single-molecule FRET. bioRxiv083287 (2017). https://www.biorxiv.org/content/early/2017/02/01/083287 .
Zickus, V. et al. Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation. Sci. Rep. 10, 20986 (2020).
pubmed: 33268900 pmcid: 7710711 doi: 10.1038/s41598-020-77737-0
Harris, P. D. Fretbursts development version (2021). https://github.com/harripd/FRETBursts/tree/polarization .
Cao, A.-M. et al. Allosteric modulators enhance agonist efficacy by increasing the residence time of a GPCR in the active state. Nat. Commun. 12, 5426 (2021).
pubmed: 34521824 pmcid: 8440590 doi: 10.1038/s41467-021-25620-5
Harris, P. D. H2mm tutorial (2021). https://doi.org/10.5281/zenodo.5566886 .
Peter, M. F. et al. Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. bioRxiv 2020.11.23.394080 (2020). http://biorxiv.org/content/early/2020/11/23/2020.11.23.394080.abstract .
Ingargiola, A., Laurence, T., Boutelle, R., Weiss, S. & Michalet, X. Photon-HDF5. Biophysical J. 110, 25–33 (2016).
doi: 10.1016/j.bpj.2015.11.013
Gebhardt, C. et al. Molecular and spectroscopic characterization of green and red cyanine fluorophores from the alexa fluor and AF series. ChemPhysChem 22, 1566–1583 (2021).
pubmed: 34185946 pmcid: 8457111 doi: 10.1002/cphc.202000935
Ingargiola, A. et al. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules. PLoS One 12, e0175766 (2017).
pubmed: 28419142 pmcid: 5395192 doi: 10.1371/journal.pone.0175766
Ingargiola, A., Lerner, E., Chung, S. Y., Weiss, S. & Michalet, X. FRETBursts: An open source toolkit for analysis of freely-diffusing Single-molecule FRET. PLoS ONE 11, 1–27 (2016).
doi: 10.1371/journal.pone.0160716
Ingargiola, A. FOpenSMFS/PyBroMo: Version 0.8.1. zenodo.org (2019).
Hagai, D. & Lerner, E. Systematic assessment of burst impurity in confocal-based single-molecule fluorescence detection using Brownian motion simulations. In: Molecules24 (2019) ISSN: 14203049. https://doi.org/10.3390/molecules24142557 .

Auteurs

Paul David Harris (PD)

Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel. paul.harris@mail.huji.ac.il.

Alessandra Narducci (A)

Physical and Synthetic Biology. Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.

Christian Gebhardt (C)

Physical and Synthetic Biology. Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.

Thorben Cordes (T)

Physical and Synthetic Biology. Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.

Shimon Weiss (S)

Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los Angeles, CA, USA.
CaliforniaNanoSystems Institute, University of California, Los Angeles, CA, USA.

Eitan Lerner (E)

Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel. eitan.lerner@mail.huji.ac.il.
The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel. eitan.lerner@mail.huji.ac.il.

Articles similaires

Humans Microscopy Animals Photons
RNA-Binding Protein FUS Fluorescence Resonance Energy Transfer Humans Biomolecular Condensates RNA
Humans High-Throughput Screening Assays Protein Tyrosine Phosphatases Fluorescence Resonance Energy Transfer Animals

Supercharged fluorescent proteins detect lanthanides via direct antennae signaling.

Kevin Y Huang, Lizette Cardenas, Andrew D Ellington et al.
1.00
Lanthanoid Series Elements Luminescent Proteins Energy Transfer Fluorescence Resonance Energy Transfer

Classifications MeSH