The poplar VQ1 gene confers salt tolerance and pathogen resistance in transgenic Arabidopsis plants via changes in hormonal signaling.
VQ1
disease
hormone
salt
Journal
G3 (Bethesda, Md.)
ISSN: 2160-1836
Titre abrégé: G3 (Bethesda)
Pays: England
ID NLM: 101566598
Informations de publication
Date de publication:
04 04 2022
04 04 2022
Historique:
accepted:
07
02
2022
received:
25
07
2021
pubmed:
25
2
2022
medline:
8
4
2022
entrez:
24
2
2022
Statut:
ppublish
Résumé
The VQ protein family is plant-specific, and is involved in growth, development, and biotic and abiotic stress responses. In this study, we found that the gene expression of poplar VQ1(Potri.001G029700) from Populus trichocarpa varied remarkably under salt stress and hormones associated with disease. A subcellular localization experiment showed that VQ1 was localized in the nucleus and cytomembrane in tobacco. The overexpression of VQ1 in Arabidopsis thaliana enhanced its resistance to salt stress and disease, and was also responsive to it through abscisic acid. Compared with wild-type, transgenic Arabidopsis lines had significantly increased levels of abscisic acid and salicylic acid. The expression of some stress-related genes, such as MPK6, NPR1, and PDF1.2, was significantly up-regulated by salt in transgenic plants, while WRKY70, ABI1, KUP6, and NCED2 were significantly down-regulated by Pseudomonas syringae pv. tomato DC3000 in transgenic plants. Together, these results demonstrate that VQ1 modulates hormonal signaling to confer multiple biotic and abiotic stress responses in transgenic Arabidopsis plants.
Identifiants
pubmed: 35199162
pii: 6535243
doi: 10.1093/g3journal/jkac044
pmc: PMC8982420
pii:
doi:
Substances chimiques
Plant Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.
Références
Plant J. 2013 Jun;74(5):730-45
pubmed: 23451802
Cell. 2016 Oct 6;167(2):313-324
pubmed: 27716505
Front Plant Sci. 2016 May 09;7:612
pubmed: 27242819
Plant J. 2010 Aug;63(4):670-9
pubmed: 20545893
PLoS One. 2016 Mar 28;11(3):e0149137
pubmed: 27019084
New Phytol. 2014 Jul;203(2):592-606
pubmed: 24750137
Dev Cell. 2016 Jul 25;38(2):118-20
pubmed: 27459060
Nat Protoc. 2006;1(2):641-6
pubmed: 17406292
Front Plant Sci. 2018 Feb 12;9:5
pubmed: 29483921
Plant Cell Rep. 2015 May;34(5):831-41
pubmed: 25627252
Planta. 2020 Apr 21;251(5):99
pubmed: 32318830
Plant Cell. 2011 Oct;23(10):3824-41
pubmed: 21990940
Annu Rev Plant Biol. 2010;61:651-79
pubmed: 20192755
Biochim Biophys Acta. 2012 Feb;1819(2):120-8
pubmed: 21964328
Plant Physiol. 2015 Sep;169(1):371-8
pubmed: 26220951
Plant J. 2006 May;46(3):477-91
pubmed: 16623907
Trends Plant Sci. 2010 Feb;15(2):106-13
pubmed: 20047850
Curr Opin Plant Biol. 2006 Apr;9(2):180-8
pubmed: 16458043
Plant Biotechnol J. 2017 Mar;15(3):331-343
pubmed: 27565626
Sci Rep. 2017 Sep 15;7(1):11721
pubmed: 28916739
Sci Signal. 2009 Aug 18;2(84):ra45
pubmed: 19690331
Plant J. 2004 May;38(3):410-20
pubmed: 15086802
Annu Rev Plant Biol. 2002;53:247-73
pubmed: 12221975
Mol Cell. 2013 May 23;50(4):504-15
pubmed: 23706819
Plant Cell. 2004 Feb;16(2):319-31
pubmed: 14742872