The mechanism of HMGB1 secretion and release.
Journal
Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
received:
26
07
2021
accepted:
04
11
2021
revised:
13
10
2021
pubmed:
27
2
2022
medline:
20
4
2022
entrez:
26
2
2022
Statut:
ppublish
Résumé
High mobility group box 1 (HMGB1) is a nonhistone nuclear protein that has multiple functions according to its subcellular location. In the nucleus, HMGB1 is a DNA chaperone that maintains the structure and function of chromosomes. In the cytoplasm, HMGB1 can promote autophagy by binding to BECN1 protein. After its active secretion or passive release, extracellular HMGB1 usually acts as a damage-associated molecular pattern (DAMP) molecule, regulating inflammation and immune responses through different receptors or direct uptake. The secretion and release of HMGB1 is fine-tuned by a variety of factors, including its posttranslational modification (e.g., acetylation, ADP-ribosylation, phosphorylation, and methylation) and the molecular machinery of cell death (e.g., apoptosis, pyroptosis, necroptosis, alkaliptosis, and ferroptosis). In this minireview, we introduce the basic structure and function of HMGB1 and focus on the regulatory mechanism of HMGB1 secretion and release. Understanding these topics may help us develop new HMGB1-targeted drugs for various conditions, especially inflammatory diseases and tissue damage.
Identifiants
pubmed: 35217834
doi: 10.1038/s12276-022-00736-w
pii: 10.1038/s12276-022-00736-w
pmc: PMC8894452
doi:
Substances chimiques
Alarmins
0
HMGB1 Protein
0
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
91-102Informations de copyright
© 2022. The Author(s).
Références
Goodwin, G. H. & Johns, E. W. Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids. Eur. J. Biochem. 40, 215–219 (1973).
pubmed: 4772679
doi: 10.1111/j.1432-1033.1973.tb03188.x
Xue, J. et al. HMGB1 as a therapeutic target in disease. J. Cell. Physiol. 236, 3406–3419 (2021).
pubmed: 33107103
doi: 10.1002/jcp.30125
Bianchi, M. E. & Beltrame, M. Flexing DNA: HMG-box proteins and their partners. Am. J. Hum. Genet. 63, 1573–1577 (1998).
pubmed: 9837808
pmcid: 1377627
doi: 10.1086/302170
Thomas, J. O. H. M. G. I and 2 architectural DNA-binding proteins. Biochem. Soc. Trans. 4, 395–401 (2001).
doi: 10.1042/bst0290395
Wang, H. C. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 (1999).
pubmed: 10398600
doi: 10.1126/science.285.5425.248
Huttunen, H. J. & Rauvala, H. Amphoterin as an extracellular regulator of cell motility: from discovery to disease. J. Intern. Med. 255, 351–366 (2004).
pubmed: 14871459
doi: 10.1111/j.1365-2796.2003.01301.x
Kang, R. et al. HMGB1 in health and disease. Mol. Asp. Med. 40, 1–116 (2014).
doi: 10.1016/j.mam.2014.05.001
Sun, R. et al. PCV2 induces reactive oxygen species to promote nucleocytoplasmic translocation of the viral DNA binding protein HMGB1 to enhance its replication. J. Virol. 94, e00238–20 (2020).
pubmed: 32321806
pmcid: 7307167
doi: 10.1128/JVI.00238-20
Wang, B. et al. Minocycline prevents the depressive-like behavior through inhibiting the release of HMGB1 from microglia and neurons. Brain. Behav. Immun. 88, 132–143 (2020).
pubmed: 32553784
doi: 10.1016/j.bbi.2020.06.019
Gao, S. Q. et al. Neuronal HMGB1 in nucleus accumbens regulates cocaine reward memory. Addict. Biol. 25, e12739 (2020).
pubmed: 31056833
doi: 10.1111/adb.12739
Deng, M., Scott, M. J., Fan, J. & Billiar, T. R. Location is the key to function: HMGB1 in sepsis and trauma-induced inflammation. J. Leukoc. Biol. 106, 161–169 (2019).
pubmed: 30946496
Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).
pubmed: 12110890
doi: 10.1038/nature00858
Pusterla, T., de Marchis, F., Palumbo, R. & Bianchi, M. E. High mobility group B2 is secreted by myeloid cells and has mitogenic and chemoattractant activities similar to high mobility group B1. Autoimmunity 42, 308-310 (2009).
doi: 10.1080/08916930902831845
Yang, D. et al. High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. J. Exp. Med. 209, 157–171 (2012).
pubmed: 22184635
pmcid: 3260868
doi: 10.1084/jem.20101354
Pellegrini, L. et al. HMGB1 and repair: focus on the heart. Pharmacol. Ther. 196, 160–182 (2019).
pubmed: 30529040
doi: 10.1016/j.pharmthera.2018.12.005
Chen, R. et al. HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon 6, e05672 (2020).
pubmed: 33313438
pmcid: 7720697
doi: 10.1016/j.heliyon.2020.e05672
Bustin, M., Neihart, N. K. & Fagan, J. B. mRNA of chromosomal proteins HMG-1 and HMG-2 are polyadenylated. Biochem. Biophys. Res. Commun. 101, 893–897 (1981).
pubmed: 6118142
doi: 10.1016/0006-291X(81)91833-7
Ferrari, S., Ronfani, L., Calogero, S. & Bianchi, M. E. The mouse gene coding for high mobility group 1 protein (HMG1). J. Biol. Chem. 269, 28803–28808 (1994).
pubmed: 7961836
doi: 10.1016/S0021-9258(19)61977-0
Kwak, M. S. et al. Immunological significance of HMGB1 post-translational modification and redox biology. Front. Immunol. 11, 1189 (2020).
pubmed: 32587593
pmcid: 7297982
doi: 10.3389/fimmu.2020.01189
Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. Embo. J. 22, 5551–5560 (2003).
pubmed: 14532127
pmcid: 213771
doi: 10.1093/emboj/cdg516
Huttunen, H. J., Fages, C., Kuja-Panula, J., Ridley, A. J. & Rauvala, H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res. 62, 4805–4811 (2002).
pubmed: 12183440
Gong, W., Li, Y., Chao, F., Huang, G. & He, F. Amino acid residues 201–205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1. J. Biomed. Sci. 16, 83 (2009).
pubmed: 19751520
pmcid: 2754419
doi: 10.1186/1423-0127-16-83
Li, J. et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol. Med. 9, 37–45 (2003).
pubmed: 12765338
pmcid: 1430376
doi: 10.1007/BF03402105
Gong, W. et al. The anti-inflammatory activity of HMGB1 A box is enhanced when fused with C-terminal acidic tail. J. Biomed. Biotechnol. 2010, 915234 (2010).
pubmed: 20379370
pmcid: 2850157
doi: 10.1155/2010/915234
Lu, B. et al. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev. Clin. Immunol. 10, 713–727 (2014).
pubmed: 24746113
pmcid: 4056343
doi: 10.1586/1744666X.2014.909730
Tang, Y. et al. Regulation of posttranslational modifications of HMGB1 during immune responses. Antioxid. Redox Signal 24, 620–634 (2016).
pubmed: 26715031
pmcid: 5349223
doi: 10.1089/ars.2015.6409
Tang, D. et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J. Leukoc. Biol. 81, 741–747 (2007).
pubmed: 17135572
doi: 10.1189/jlb.0806540
Dave, S. H. et al. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J. Leukoc. Biol. 86, 633–643 (2009).
pubmed: 19454652
pmcid: 2735284
doi: 10.1189/jlb.1008662
Sitapara, R. A. et al. The alpha7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Mol. Med. 26, 98 (2020).
pubmed: 33126860
pmcid: 7596622
doi: 10.1186/s10020-020-00224-9
Dhupar, R. et al. Interferon regulatory factor 1 mediates acetylation and release of high mobility group box 1 from hepatocytes during murine liver ischemia-reperfusion injury. Shock 35, 293–301 (2011).
pubmed: 20856174
doi: 10.1097/SHK.0b013e3181f6aab0
Lu, B. et al. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc. Natl Acad. Sci. USA 111, 3068–3073 (2014).
pubmed: 24469805
pmcid: 3939889
doi: 10.1073/pnas.1316925111
Rabadi, M. M. et al. High-mobility group box 1 is a novel deacetylation target of Sirtuin1. Kidney Int. 87, 95–108 (2015).
pubmed: 24940804
doi: 10.1038/ki.2014.217
Lee, W., Ku, S. K. & Bae, J. S. Zingerone reduces HMGB1-mediated septic responses and improves survival in septic mice. Toxicol. Appl. Pharmacol. 329, 202–211 (2017).
pubmed: 28610995
doi: 10.1016/j.taap.2017.06.006
Xu, S. et al. Evidence for SIRT1 mediated HMGB1 release from kidney cells in the early stages of hemorrhagic shock. Front. Physiol. 10, 854 (2019).
pubmed: 31333497
pmcid: 6625367
doi: 10.3389/fphys.2019.00854
Ito, N. et al. Cytolytic cells induce HMGB1 release from melanoma cell lines. J. Leukoc. Biol. 81, 75–83 (2007).
pubmed: 16968820
doi: 10.1189/jlb.0306169
Oh, Y. J. et al. HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J. Immunol. 182, 5800–5809 (2009).
pubmed: 19380828
doi: 10.4049/jimmunol.0801873
Davis, K. et al. Poly(ADP-ribosyl)ation of high mobility group box 1 (HMGB1) protein enhances inhibition of efferocytosis. Mol. Med. 18, 359–369 (2012).
pubmed: 22204001
doi: 10.2119/molmed.2011.00203
Ge, X. et al. High mobility group box-1 (HMGB1) participates in the pathogenesis of alcoholic liver disease (ALD). J. Biol. Chem. 289, 22672–22691 (2014).
pubmed: 24928512
pmcid: 4132775
doi: 10.1074/jbc.M114.552141
Kim, Y. H. et al. N-linked glycosylation plays a crucial role in the secretion of HMGB1. J. Cell Sci. 129, 29–38 (2016).
pubmed: 26567221
Kwak, M. S. et al. Peroxiredoxin-mediated disulfide bond formation is required for nucleocytoplasmic translocation and secretion of HMGB1 in response to inflammatory stimuli. Redox Biol. 24, 101203 (2019).
pubmed: 31026770
pmcid: 6482348
doi: 10.1016/j.redox.2019.101203
Wu, F., Zhao, Z. H., Ding, S. T., Wu, H. H. & Lu, J. J. High mobility group box 1 protein is methylated and transported to cytoplasm in clear cell renal cell carcinoma. Asian Pac. J. Cancer Prev. 14, 5789–5795 (2013).
pubmed: 24289579
doi: 10.7314/APJCP.2013.14.10.5789
Yang, H., Wang, H., Chavan, S. S. & Andersson, U. High mobility group box protein 1 (HMGB1): the prototypical endogenous danger molecule. Mol. Med. 21(Suppl 1), S6–S12 (2015).
pubmed: 26605648
pmcid: 4661054
doi: 10.2119/molmed.2015.00087
Kong, Q. et al. SIRT6-PARP1 is involved in HMGB1 polyADP-ribosylation and acetylation and promotes chemotherapy-induced autophagy in leukemia. Cancer Biol. Ther. 21, 320–331 (2020).
pubmed: 31928132
pmcid: 7515491
doi: 10.1080/15384047.2019.1702397
Li, Y., Xie, J., Li, X. & Fang, J. Poly (ADP-ribosylation) of HMGB1 facilitates its acetylation and promotes HMGB1 translocation-associated chemotherapy-induced autophagy in leukaemia cells. Oncol. Lett. 19, 368–378 (2020).
pubmed: 31897149
Yang, M. et al. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy. Autophagy 11, 214–224 (2015).
pubmed: 25607248
pmcid: 4502776
doi: 10.4161/15548627.2014.994400
Raucci, A. et al. The Janus face of HMGB1 in heart disease: a necessary update. Cell. Mol. Life Sci. 76, 211–229 (2019).
pubmed: 30306212
doi: 10.1007/s00018-018-2930-9
Cai, X., Biswas, I., Panicker, S. R., Giri, H. & Rezaie, A. R. Activated protein C inhibits lipopolysaccharide-mediated acetylation and secretion of high-mobility group box 1 in endothelial cells. J. Thromb. Haemost. 17, 803–817 (2019).
pubmed: 30865333
pmcid: 6494677
doi: 10.1111/jth.14425
Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347–358 (1975).
pubmed: 1096303
doi: 10.1126/science.1096303
Volchuk, A., Ye, A., Chi, L., Steinberg, B. E. & Goldenberg, N. M. Indirect regulation of HMGB1 release by gasdermin D. Nat. Commun. 11, 4561 (2020).
pubmed: 32917873
pmcid: 7486936
doi: 10.1038/s41467-020-18443-3
Lee, W. J. et al. Profibrogenic effect of high-mobility group box protein-1 in human dermal fibroblasts and its excess in keloid tissues. Sci. Rep. 8, 8434 (2018).
pubmed: 29849053
pmcid: 5976629
doi: 10.1038/s41598-018-26501-6
Pisetsky, D. S. The expression of HMGB1 on microparticles released during cell activation and cell death in vitro and in vivo. Mol. Med. 20, 158–163 (2014).
pubmed: 24618884
pmcid: 4002850
doi: 10.2119/molmed.2014.00014
min, H. J. et al. Th2 cytokines-DUOX2-ROS-HMGB1 translocation axis is important in the pathogenesis of allergic rhinitis. Clin. Sci. 135, 483–494 (2021).
doi: 10.1042/CS20201212
min, H. J. et al. ROS-dependent HMGB1 secretion upregulates IL-8 in upper airway epithelial cells under hypoxic condition. Mucosal Immunol. 10, 685–694 (2017).
pubmed: 27624778
doi: 10.1038/mi.2016.82
Sekiguchi, F. et al. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. Neuropharmacology 141, 201–213 (2018).
pubmed: 30179591
doi: 10.1016/j.neuropharm.2018.08.040
Cui, T. et al. Oxidative stress-induced HMGB1 release from melanocytes: a paracrine mechanism underlying the cutaneous inflammation in vitiligo. J. Invest. Dermatol. 139, 2174–2184.e2174 (2019).
pubmed: 30998983
doi: 10.1016/j.jid.2019.03.1148
Tsung, A. et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J. Exp. Med. 204, 2913–2923 (2007).
pubmed: 17984303
pmcid: 2118528
doi: 10.1084/jem.20070247
Tang, D. et al. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. Am. J. Respir. Cell Mol. Biol. 41, 651–660 (2009).
pubmed: 19265175
pmcid: 2784404
doi: 10.1165/rcmb.2008-0119OC
Kato, S. et al. Edaravone, a novel free radical scavenger, reduces high-mobility group box 1 and prolongs survival in a neonatal sepsis model. Shock 32, 586–592 (2009).
pubmed: 19295481
doi: 10.1097/SHK.0b013e3181a2b886
Zhang, Z. W. et al. Antioxidant inhibits HMGB1 expression and reduces pancreas injury in rats with severe acute pancreatitis. Dig. Dis. Sci. 55, 2529–2536 (2010).
pubmed: 19997973
doi: 10.1007/s10620-009-1073-0
Hosakote, Y. M., Brasier, A. R., Casola, A., Garofalo, R. P. & Kurosky, A. Respiratory syncytial virus infection triggers epithelial HMGB1 release as a damage-associated molecular pattern promoting a monocytic inflammatory response. J. Virol. 90, 9618–9631 (2016).
pubmed: 27535058
pmcid: 5068515
doi: 10.1128/JVI.01279-16
Delucchi, F. et al. Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho-functional ventricular remodeling in type-1 diabetic rats. PLoS ONE 7, e39836 (2012).
pubmed: 22768138
pmcid: 3387239
doi: 10.1371/journal.pone.0039836
Ahmed, S. M., Luo, L., Namani, A., Wang, X. J. & Tang, X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys. Acta Mol. Basis Dis. 1863, 585–597 (2017).
pubmed: 27825853
doi: 10.1016/j.bbadis.2016.11.005
Vijayan, V., Wagener, F. & Immenschuh, S. The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochem. Pharmacol. 153, 159–167 (2018).
pubmed: 29452096
doi: 10.1016/j.bcp.2018.02.010
Wang, J., Hu, X. & Jiang, H. Nrf-2–HO-1–HMGB1 axis: an important therapeutic approach for protection against myocardial ischemia and reperfusion injury. Int. J. Cardiol. 172, 223–224 (2014).
pubmed: 24456890
doi: 10.1016/j.ijcard.2013.12.273
Liu, C., Zhu, C., Wang, G., Xu, R. & Zhu, Y. Higenamine regulates Nrf2-HO-1-Hmgb1 axis and attenuates intestinal ischemia-reperfusion injury in mice. Inflamm. Res. 64, 395–403 (2015).
pubmed: 25929435
doi: 10.1007/s00011-015-0817-x
Wang, J., Hu, X., Xie, J., Xu, W. & Jiang, H. Beta-1-adrenergic receptors mediate Nrf2-HO-1-HMGB1 axis regulation to attenuate hypoxia/reoxygenation-induced cardiomyocytes injury in vitro. Cell. Physiol. Biochem. 35, 767–777 (2015).
pubmed: 25634756
doi: 10.1159/000369736
Yu, Y. et al. Hydrogen gas protects against intestinal injury in wild type but not NRF2 knockout mice with severe sepsis by regulating HO-1 and HMGB1 release. Shock 48, 364–370 (2017).
pubmed: 28234792
doi: 10.1097/SHK.0000000000000856
Faridvand, Y. et al. Nrf2 activation and down-regulation of HMGB1 and MyD88 expression by amnion membrane extracts in response to the hypoxia-induced injury in cardiac H9c2 cells. Biomed. Pharmacother. 109, 360–368 (2019).
pubmed: 30399570
doi: 10.1016/j.biopha.2018.10.035
Rivera-Perez, J. et al. Epigallocatechin 3-gallate has a neuroprotective effect in retinas of rabbits with ischemia/reperfusion through the activation of Nrf2/HO-1. Int. J. Mol. Sci. 21, 3716 (2020).
pmcid: 7279438
doi: 10.3390/ijms21103716
Park, E. J., Kim, Y. M. & Chang, K. C. Hemin reduces HMGB1 release by UVB in an AMPK/HO-1-dependent PAthway in Human Keratinocytes HaCaT cells. Arch. Med. Res. 48, 423–431 (2017).
pubmed: 29089150
doi: 10.1016/j.arcmed.2017.10.007
Mazur-Bialy, A. I. & Pochec, E. The time-course of antioxidant irisin activity: role of the Nrf2/HO-1/HMGB1 axis. Antioxidants 10, 88 (2021).
pubmed: 33440644
pmcid: 7827448
doi: 10.3390/antiox10010088
Qu, J. et al. Downregulation of HMGB1 is required for the protective role of Nrf2 in EMT-mediated PF. J. Cell. Physiol. 234, 8862–8872 (2019).
pubmed: 30370641
doi: 10.1002/jcp.27548
Chen, H., Chen, X., Luo, Y. & Shen, J. Potential molecular targets of peroxynitrite in mediating blood-brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic. Res. 52, 1220–1239 (2018).
pubmed: 30468092
doi: 10.1080/10715762.2018.1521519
Tsoyi, K. et al. Carbon monoxide from CORM-2 reduces HMGB1 release through regulation of IFN-beta/JAK2/STAT-1/INOS/NO signaling but not COX-2 in TLR-activated macrophages. Shock 34, 608–614 (2010).
pubmed: 20442692
doi: 10.1097/SHK.0b013e3181e46f15
Wang, S. et al. High-mobility group box 1 protein antagonizes the immunosuppressive capacity and therapeutic effect of mesenchymal stem cells in acute kidney injury. J. Transl. Med. 18, 175 (2020).
pubmed: 32312307
pmcid: 7169035
doi: 10.1186/s12967-020-02334-8
Zhu, Z. et al. HMGB1 impairs endothelium-dependent relaxation in diabetes through TLR4/eNOS pathway. FASEB J. 34, 8641–8652 (2020).
pubmed: 32359123
doi: 10.1096/fj.202000242R
Gliozzi, M. et al. Modulation of nitric oxide synthases by oxidized LDLs: role in vascular inflammation and atherosclerosis development. Int. J. Mol. Sci. 20, 3294 (2019).
pmcid: 6651385
doi: 10.3390/ijms20133294
McCord, J. M. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312, 159–163 (1985).
pubmed: 2981404
doi: 10.1056/NEJM198501173120305
Shen, J. et al. Nitric oxide down-regulates caveolin-1 expression in rat brains during focal cerebral ischemia and reperfusion injury. J. Neurochem. 96, 1078–1089 (2006).
pubmed: 16417587
doi: 10.1111/j.1471-4159.2005.03589.x
Chen, X. M., Chen, H. S., Xu, M. J. & Shen, J. G. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol. Sin. 34, 67–77 (2013).
pubmed: 22842734
doi: 10.1038/aps.2012.82
Crow, J. P. & Beckman, J. S. The role of peroxynitrite in nitric oxide-mediated toxicity. Curr. Top. Microbiol. Immunol. 196, 57–73 (1995).
pubmed: 7634825
Loukili, N. et al. Peroxynitrite induces HMGB1 release by cardiac cells in vitro and HMGB1 upregulation in the infarcted myocardium in vivo. Cardiovasc. Res. 89, 586–594 (2011).
pubmed: 21113057
doi: 10.1093/cvr/cvq373
Chen, H. et al. Glycyrrhizin prevents hemorrhagic transformation and improves neurological outcome in ischemic stroke with delayed thrombolysis through targeting peroxynitrite-mediated HMGB1 signaling. Transl. Stroke Res. 11, 967–982 (2020).
pubmed: 31872339
doi: 10.1007/s12975-019-00772-1
Kikuchi, K. et al. The free radical scavenger edaravone rescues rats from cerebral infarction by attenuating the release of high-mobility group box-1 in neuronal cells. J. Pharmacol. Exp. Ther. 329, 865–874 (2009).
pubmed: 19293391
doi: 10.1124/jpet.108.149484
Xu, M. et al. Baicalin can scavenge peroxynitrite and ameliorate endogenous peroxynitrite-mediated neurotoxicity in cerebral ischemia-reperfusion injury. J. Ethnopharmacol. 150, 116–124 (2013).
pubmed: 23973788
doi: 10.1016/j.jep.2013.08.020
Wang, H. & Liu, D. Baicalin inhibits high-mobility group box 1 release and improves survival in experimental sepsis. Shock 41, 324–330 (2014).
pubmed: 24430548
doi: 10.1097/SHK.0000000000000122
Chandrashekaran, V. et al. HMGB1-RAGE pathway drives peroxynitrite signaling-induced IBD-like inflammation in murine nonalcoholic fatty liver disease. Redox Biol. 13, 8–19 (2017).
pubmed: 28551086
pmcid: 5447385
doi: 10.1016/j.redox.2017.05.005
Chen, H. et al. Baicalin attenuates blood-brain barrier disruption and hemorrhagic transformation and improves neurological outcome in ischemic stroke rats with delayed t-PA treatment: involvement of ONOO(-)-MMP-9 pathway. Transl. Stroke Res. 9, 515–529 (2018).
pubmed: 29275501
doi: 10.1007/s12975-017-0598-3
Park, H. S. et al. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol. 173, 3589–3593 (2004).
pubmed: 15356101
doi: 10.4049/jimmunol.173.6.3589
Fan, J. et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J. Immunol. 178, 6573–6580 (2007).
pubmed: 17475888
doi: 10.4049/jimmunol.178.10.6573
Tang, D., Kang, R., Zeh, H. Jr & Lotze, M. T. High-mobility group box 1, oxidative stress, and disease. Antioxid. Redox Signal 14, 1315–1335 (2011).
pubmed: 20969478
pmcid: 3048826
doi: 10.1089/ars.2010.3356
Zhao, P. et al. HMGB1 release by H
doi: 10.1038/cddiscovery.2017.8
Hwang, S. M., Lee, J. Y., Park, C. K. & Kim, Y. H. The role of TRP channels and PMCA in brain disorders: intracellular calcium and pH homeostasis. Front Cell Dev. Biol. 9, 584388 (2021).
pubmed: 33585474
pmcid: 7876282
doi: 10.3389/fcell.2021.584388
Irvine, R. 20 years of Ins(1,4,5)P3,and 40 years before. Nat. Rev. Mol. Cell. Biol. 4, 586–590 (2003).
pubmed: 12838341
doi: 10.1038/nrm1152
Tu, C. L., Chang, W. & Bikle, D. D. Phospholipase cgamma1 is required for activation of store-operated channels in human keratinocytes. J. Invest. Dermatol. 125, 187–197 (2005).
doi: 10.1111/j.0022-202X.2004.23544.x
Carafoli, E. & Krebs, J. Why calcium? How calcium became the best communicator. J. Biol. Chem. 291, 20849–20857 (2016).
pubmed: 27462077
pmcid: 5076498
doi: 10.1074/jbc.R116.735894
Bhosale, G., Sharpe, J. A., Sundier, S. Y. & Duchen, M. R. Calcium signaling as a mediator of cell energy demand and a trigger to cell death. Ann. N. Y. Acad. Sci. 1350, 107–116 (2015).
pubmed: 26375864
pmcid: 4949562
doi: 10.1111/nyas.12885
Criddle, D. N. Reactive oxygen species, Ca(2+) stores and acute pancreatitis; a step closer to therapy? Cell Calcium 60, 180–189 (2016).
pubmed: 27229361
doi: 10.1016/j.ceca.2016.04.007
Zhang, X. et al. Calcium/calmodulin-dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophages. J. Immunol. 181, 5015–5023 (2008).
pubmed: 18802105
doi: 10.4049/jimmunol.181.7.5015
Peng, H. H. et al. Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1. Sci. Rep. 7, 16628 (2017).
pubmed: 29192209
pmcid: 5709501
doi: 10.1038/s41598-017-16778-4
Tian, T. et al. Sphingosine kinase 1 regulates HMGB1 translocation by directly interacting with calcium/calmodulin protein kinase II-delta in sepsis-associated liver injury. Cell Death Dis. 11, 1037 (2020).
pubmed: 33281190
pmcid: 7719708
doi: 10.1038/s41419-020-03255-6
Chen, S. et al. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett. 394, 22–32 (2017).
pubmed: 28216372
doi: 10.1016/j.canlet.2017.02.011
Falk, H. et al. Calcium electroporation induces tumor eradication, long-lasting immunity and cytokine responses in the CT26 colon cancer mouse model. Oncoimmunology 6, e1301332 (2017).
pubmed: 28638724
pmcid: 5467987
doi: 10.1080/2162402X.2017.1301332
Quan, H. et al. Stearoyl lysophosphatidylcholine inhibits LPS-induced extracellular release of HMGB1 through the G2A/calcium/CaMKKbeta/AMPK pathway. Eur. J. Pharmacol. 852, 125–133 (2019).
pubmed: 30797785
doi: 10.1016/j.ejphar.2019.02.038
Li, W. et al. LPS induces active HMGB1 release from hepatocytes into exosomes through the coordinated activities of TLR4 and caspase-11/GSDMD signaling. Front. Immunol. 11, 229 (2020).
pubmed: 32328059
pmcid: 7160675
doi: 10.3389/fimmu.2020.00229
Ma, L., Kim, S. J. & Oh, K. I. Calcium/calmodulin-dependent protein kinase is involved in the release of high mobility group box 1 via the interferon-beta signaling pathway. Immune Netw. 12, 148–154 (2012).
pubmed: 23091438
pmcid: 3467413
doi: 10.4110/in.2012.12.4.148
Shin, J. H. et al. Ethyl pyruvate inhibits HMGB1 phosphorylation and release by chelating calcium. Mol. Med. 20, 649–657 (2015).
pubmed: 25333921
pmcid: 4365067
doi: 10.2119/molmed.2014.00039
Turner, J. G., Dawson, J. & Sullivan, D. M. Nuclear export of proteins and drug resistance in cancer. Biochem. Pharmacol. 83, 1021–1032 (2012).
pubmed: 22209898
doi: 10.1016/j.bcp.2011.12.016
Turner, J. G. & Sullivan, D. M. CRM1-mediated nuclear export of proteins and drug resistance in cancer. Curr. Med. Chem. 15, 2648–2655 (2008).
pubmed: 18991627
doi: 10.2174/092986708786242859
Chen, Y. et al. Translocation of endogenous danger signal HMGB1 from nucleus to membrane microvesicles in macrophages. J. Cell. Physiol. 231, 2319–2326 (2016).
pubmed: 26909509
pmcid: 5021294
doi: 10.1002/jcp.25352
Wu, M. et al. KPT-330, a potent and selective CRM1 inhibitor, exhibits anti-inflammation effects and protection against sepsis. Biochem. Biophys. Res. Commun. 503, 1773–1779 (2018).
pubmed: 30064906
doi: 10.1016/j.bbrc.2018.07.112
Tang, D. et al. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and roinflammatory function in macrophages. J. Immunol. 179, 1236–1244 (2007).
pubmed: 17617616
doi: 10.4049/jimmunol.179.2.1236
Sun, Y. Q. et al. Expression of CRM1 and CDK5 shows high prognostic accuracy for gastric cancer. World J. Gastroenterol. 23, 2012–2022 (2017).
pubmed: 28373767
pmcid: 5360642
doi: 10.3748/wjg.v23.i11.2012
Wang, A. Y. & Liu, H. The past, present, and future of CRM1/XPO1 inhibitors. Stem Cell Investig. 6, 6 (2019).
pubmed: 30976603
pmcid: 6414360
doi: 10.21037/sci.2019.02.03
Ayala, A., Song, G. Y., Chung, C. S., Redmond, K. M. & Chaudry, I. H. Immune depression in polymicrobial sepsis: the role of necrotic (injured) tissue and endotoxin. Crit. Care. Med. 28, 2949–2955 (2000).
pubmed: 10966277
doi: 10.1097/00003246-200008000-00044
Chen, G. et al. Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. J. Leukoc. Biol. 76, 994–1001 (2004).
pubmed: 15331624
doi: 10.1189/jlb.0404242
Oeckinghaus, A., Hayden, M. S. & Ghosh, S. Crosstalk in NF-kappaB signaling pathways. Nat. Immunol. 12, 695–708 (2011).
pubmed: 21772278
doi: 10.1038/ni.2065
Lin, F. et al. Ox-LDL induces endothelial cell apoptosis and macrophage migration by regulating caveolin-1 phosphorylation. J. Cell. Physiol. 233, 6683–6692 (2018).
pubmed: 29323707
doi: 10.1002/jcp.26468
Hiramoto, S. et al. Cystitis-related bladder pain involves ATP-dependent HMGB1 release from macrophages and its downstream H2S/Cav3.2 signaling in mice. Cells 9, 1748 (2020).
pmcid: 7463894
doi: 10.3390/cells9081748
Wang, C. M., Jiang, M. & Wang, H. J. Effect of NFkappaB inhibitor on highmobility group protein B1 expression in a COPD rat model. Mol. Med Rep. 7, 499–502 (2013).
pubmed: 23151670
doi: 10.3892/mmr.2012.1181
Nowell, C. S. & Radtke, F. Notch as a tumour suppressor. Nat. Rev. Cancer 17, 145–159 (2017).
pubmed: 28154375
doi: 10.1038/nrc.2016.145
Garis, M. & Garrett-Sinha, L. A. Notch signaling in B cell immune responses. Front. Immunol. 11, 609324 (2020).
pubmed: 33613531
doi: 10.3389/fimmu.2020.609324
Castro, R. C., Goncales, R. A., Zambuzi, F. A. & Frantz, F. G. Notch signaling pathway in infectious diseases: role in the regulation of immune response. Inflamm. Res. 70, 261–274 (2021).
pubmed: 33558976
doi: 10.1007/s00011-021-01442-5
Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 14, 290–298 (2008).
pubmed: 18311147
doi: 10.1038/nm1731
Okamoto, M. et al. Essential role of Notch signaling in effector memory CD8+ T cell-mediated airway hyperresponsiveness and inflammation. J. Exp. Med 205, 1087–1097 (2008).
pubmed: 18426985
pmcid: 2373841
doi: 10.1084/jem.20072200
Tsao, P. N. et al. Lipopolysaccharide-induced Notch signaling activation through JNK-dependent pathway regulates inflammatory response. J. Biomed. Sci. 18, 56 (2011).
pubmed: 21843347
pmcid: 3176188
doi: 10.1186/1423-0127-18-56
Zhou, J. R. et al. Neuropeptide Y induces secretion of high-mobility group box 1 protein in mouse macrophage via PKC/ERK dependent pathway. J. Neuroimmunol. 260, 55–59 (2013).
pubmed: 23623189
doi: 10.1016/j.jneuroim.2013.04.005
Huang, W. et al. Heat stress induces RIP1/RIP3-dependent necroptosis through the MAPK, NF-kappaB, and c-Jun signaling pathways in pulmonary vascular endothelial cells. Biochem. Biophys. Res. Commun. 528, 206–212 (2020).
pubmed: 32471717
doi: 10.1016/j.bbrc.2020.04.150
Kim, H. S. et al. Sulfatide inhibits HMGB1 secretion by hindering toll-like receptor 4 localization within lipid rafts. Front. Immunol. 11, 1305 (2020).
pubmed: 32655573
pmcid: 7324676
doi: 10.3389/fimmu.2020.01305
Nishioku, T. et al. Dimethyl fumarate prevents osteoclastogenesis by decreasing NFATc1 expression, inhibiting of erk and p38 MAPK phosphorylation, and suppressing of HMGB1 release. Biochem. Biophys. Res. Commun. 530, 455–461 (2020).
pubmed: 32553625
doi: 10.1016/j.bbrc.2020.05.088
Mohanty, S. K. et al. High mobility group box 1 release by cholangiocytes governs biliary atresia pathogenesis and correlates with increases in afflicted infants. Hepatology 74, 864–878 (2021).
pubmed: 33559243
doi: 10.1002/hep.31745
Ma, Y. et al. NRP1 regulates HMGB1 in vascular endothelial cells under high homocysteine condition. Am. J. Physiol. Heart Circ. Physiol. 316, H1039–H1046 (2019).
pubmed: 30767669
doi: 10.1152/ajpheart.00746.2018
Darnell, J. E. J. The JAK-STAT pathway summary of initial studies and recent advances. Recent Prog. Horm. Res. 51, 391–403 (1996).
pubmed: 8701087
Ou, A., Ott, M., Fang, D. & Heimberger, A. B. The role and therapeutic targeting of JAK/STAT signaling in glioblastoma. Cancers 13, 437 (2021).
pubmed: 33498872
pmcid: 7865703
doi: 10.3390/cancers13030437
Murray, P. J. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629 (2007).
pubmed: 17312100
doi: 10.4049/jimmunol.178.5.2623
Zhou, S. et al. Angiotensin II enhances the acetylation and release of HMGB1 in RAW264.7 macrophage. Cell Biol. Int. 42, 1160–1169 (2018).
pubmed: 29741224
doi: 10.1002/cbin.10984
Hao, J. et al. IFN-gamma induces lipogenesis in mouse mesangial cells via the JAK2/STAT1 pathway. Am. J. Physiol. Cell Physiol. 304, C760–C767 (2013).
pubmed: 23407880
doi: 10.1152/ajpcell.00352.2012
Park, E. J., Kim, Y. M., Kim, H. J. & Chang, K. C. Degradation of histone deacetylase 4 via the TLR4/JAK/STAT1 signaling pathway promotes the acetylation of high mobility group box 1 (HMGB1) in lipopolysaccharide-activated macrophages. FEBS Open Bio. 8, 1119–1126 (2018).
pubmed: 29988587
pmcid: 6026695
doi: 10.1002/2211-5463.12456
Imbaby, S. et al. Beneficial effect of STAT3 decoy oligodeoxynucleotide transfection on organ injury and mortality in mice with cecal ligation and puncture-induced sepsis. Sci. Rep. 10, 15316 (2020).
pubmed: 32943679
pmcid: 7498613
doi: 10.1038/s41598-020-72136-x
Wu, Y. et al. Study on the mechanism of JAK2/STAT3 signaling pathway-mediated inflammatory reaction after cerebral ischemia. Mol. Med. Rep. 17, 5007–5012 (2018).
pubmed: 29393445
pmcid: 5865961
Wang, G., Zhang, J., Dui, D., Ren, H. & Liu, J. High mobility group box 1 induces the activation of the Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in pancreatic acinar cells in rats, while AG490 and rapamycin inhibit their activation. Bosn. J. Basic Med. Sci. 16, 307–312 (2016).
pubmed: 27754827
pmcid: 5136768
Guo, H. F. et al. High mobility group box 1 induces synoviocyte proliferation in rheumatoid arthritis by activating the signal transducer and activator transcription signal pathway. Clin. Exp. Med. 11, 65–74 (2011).
pubmed: 21069420
doi: 10.1007/s10238-010-0116-3
Conti, L. et al. The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J. 27, 4731–4744 (2013).
pubmed: 23970797
doi: 10.1096/fj.13-230201
Zhang, B., Yang, N., Mo, Z. M., Lin, S. P. & Zhang, F. IL-17A enhances microglial response to OGD by regulating p53 and PI3K/Akt pathways with involvement of ROS/HMGB1. Front. Mol. Neurosci. 10, 271 (2017).
pubmed: 28912678
pmcid: 5583146
doi: 10.3389/fnmol.2017.00271
Zhang, X. et al. Silencing of functional p53 attenuates NAFLD by promoting HMGB1-related autophagy induction. Hepatol. Int. 14, 828–841 (2020).
pubmed: 32607732
doi: 10.1007/s12072-020-10068-4
Livesey, K. et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72, 1996–2005 (2012).
pubmed: 22345153
pmcid: 3417120
doi: 10.1158/0008-5472.CAN-11-2291
Davalos, A. R. et al. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 201, 613–629 (2013).
pubmed: 23649808
pmcid: 3653366
doi: 10.1083/jcb.201206006
Yan, H. X. et al. p53 promotes inflammation-associated hepatocarcinogenesis by inducing HMGB1 release. J. Hepatol. 59, 762–768 (2013).
pubmed: 23714159
pmcid: 3805120
doi: 10.1016/j.jhep.2013.05.029
Luo, P. et al. HMGB1 represses the anti-cancer activity of sunitinib by governing TP53 autophagic degradation via its nucleus-to-cytoplasm transport. Autophagy 14, 2155–2170 (2018).
pubmed: 30205729
pmcid: 6984767
doi: 10.1080/15548627.2018.1501134
Shao, X. R. et al. Peroxisome proliferator-activated receptor-γ: master regulator of adipogenesis and obesity. Curr. Stem. Cell Res. Ther. 11, 282–289 (2016).
pubmed: 26018229
doi: 10.2174/1574888X10666150528144905
Hernandez-Quiles, M., Broekema, M. F. & Kalkhoven, E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Front. Endocrinol. 12, 624112 (2021).
doi: 10.3389/fendo.2021.624112
Hwang, J. S. et al. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone inhibits lipopolysaccharide-induced release of high mobility group box 1. Mediators Inflamm. 2012, 352807 (2012).
pubmed: 23316104
pmcid: 3539392
doi: 10.1155/2012/352807
Ying, S., Xiao, X., Chen, T. & Lou, J. PPAR ligands function as suppressors that target biological actions of HMGB1. PPAR Res. 2016, 2612743 (2016).
pubmed: 27563308
pmcid: 4985574
doi: 10.1155/2016/2612743
Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).
pubmed: 23702978
doi: 10.1038/nri3452
Craven, R. R. et al. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS ONE 4, e7446 (2009).
pubmed: 19826485
pmcid: 2758589
doi: 10.1371/journal.pone.0007446
Lamkanfi, M. et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J. Immunol. 185, 4385–4392 (2010).
pubmed: 20802146
doi: 10.4049/jimmunol.1000803
Barlan, A. U., Griffin, T. M., McGuire, K. A. & Wiethoff, C. M. Adenovirus membrane penetration activates the NLRP3 inflammasome. J. Virol. 85, 146–155 (2011).
pubmed: 20980503
doi: 10.1128/JVI.01265-10
Miller, J. M. et al. Curcumin: a double hit on malignant mesothelioma. Cancer Prev. Res. 7, 330–340 (2014).
doi: 10.1158/1940-6207.CAPR-13-0259
Lu, B. et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488, 670–674 (2012).
pubmed: 22801494
pmcid: 4163918
doi: 10.1038/nature11290
Yu, S. et al. The complement receptor C5aR2 promotes protein kinase R expression and contributes to NLRP3 inflammasome activation and HMGB1 release from macrophages. J. Biol. Chem. 294, 8384–8394 (2019).
pubmed: 30971430
pmcid: 6544858
doi: 10.1074/jbc.RA118.006508
Xie, M. et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 7, 13280 (2016).
pubmed: 27779186
pmcid: 5093342
doi: 10.1038/ncomms13280
Xiang, M. et al. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J. Immunol. 187, 4809–4817 (2011).
pubmed: 21940680
doi: 10.4049/jimmunol.1102093
Zhu, P. et al. Gene silencing of NALP3 protects against liver ischemia-reperfusion injury in mice. Hum. Gene Ther. 22, 853–864 (2011).
pubmed: 21128730
doi: 10.1089/hum.2010.145
Kamo, N. et al. ASC/caspase-1/IL-1beta signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatology 58, 351–362 (2013).
pubmed: 23408710
doi: 10.1002/hep.26320
Khambu, B. et al. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J. Clin. Invest. 128, 2419–2435 (2018).
pubmed: 29558368
pmcid: 5983330
doi: 10.1172/JCI91814
Willingham, S. B. et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J. Immunol. 183, 2008–2015 (2009).
pubmed: 19587006
doi: 10.4049/jimmunol.0900138
Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nat. Rev. Mol. Cell Biol. 3, 122–131 (2002).
pubmed: 11836514
doi: 10.1038/nrm732
Gardella, S. et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. Embo. Rep. 3, 995–1001 (2002).
pubmed: 12231511
pmcid: 1307617
doi: 10.1093/embo-reports/kvf198
Rausch, M. P. & Hastings, K. T. GILT modulates CD4+ T-cell tolerance to the melanocyte differentiation antigen tyrosinase-related protein 1. J. Invest. Dermatol. 132, 154–162 (2012).
pubmed: 21833020
doi: 10.1038/jid.2011.236
Lackman, R. L. & Cresswell, P. Exposure of the promonocytic cell line THP-1 to Escherichia coli induces IFN-gamma-inducible lysosomal thiol reductase expression by inflammatory cytokines. J. Immunol. 177, 4833–4840 (2006).
pubmed: 16982925
doi: 10.4049/jimmunol.177.7.4833
Lackman, R. L., Jamieson, A. M., Griffith, J. M., Geuze, H. & Cresswell, P. Innate immune recognition triggers secretion of lysosomal enzymes by macrophages. Traffic 8, 1179–1189 (2007).
pubmed: 17555533
doi: 10.1111/j.1600-0854.2007.00600.x
Chiang, H. S. & Maric, M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic. Biol. Med. 51, 688–699 (2011).
pubmed: 21640818
doi: 10.1016/j.freeradbiomed.2011.05.015
Semino, C., Angelini, G., Poggi, A. & Rubartelli, A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106, 609–616 (2005).
pubmed: 15802534
doi: 10.1182/blood-2004-10-3906
Stark, K. et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 128, 2435–2449 (2016).
pubmed: 27574188
pmcid: 5147023
doi: 10.1182/blood-2016-04-710632
Maugeri, N. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 12, 2074–2088 (2014).
pubmed: 25163512
doi: 10.1111/jth.12710
Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Invest. 125, 4638–4654 (2015).
pubmed: 26551681
pmcid: 4665785
doi: 10.1172/JCI81660
Qin, S. et al. Role of HMGB1 in apoptosis-mediated sepsis lethality. J. Exp. Med. 203, 1637–1642 (2006).
pubmed: 16818669
pmcid: 2118346
doi: 10.1084/jem.20052203
Velegraki, M. et al. Impaired clearance of apoptotic cells leads to HMGB1 release in the bone marrow of patients with myelodysplastic syndromes and induces TLR4-mediated cytokine production. Haematologica 98, 1206–1215 (2013).
pubmed: 23403315
pmcid: 3729900
doi: 10.3324/haematol.2012.064642
Jiang, G. et al. HMGB1 release triggered by the interaction of live retinal cells and uveitogenic T cells is Fas/FasL activation-dependent. J. Neuroinflammation 12, 179 (2015).
pubmed: 26394985
pmcid: 4579830
doi: 10.1186/s12974-015-0389-2
Beom, J. H. et al. Targeted temperature management at 33 degrees C or 36 induces equivalent myocardial protection by inhibiting HMGB1 release in myocardial ischemia/reperfusion injury. PLoS ONE 16, e0246066 (2021).
pubmed: 33503060
pmcid: 7840046
doi: 10.1371/journal.pone.0246066
Wang, Z. K. et al. Electroacupuncture pretreatment attenuates acute lung injury through α7 nicotinic acetylcholine receptor-mediated inhibition of HMGB1 release in rats after cardiopulmonary bypass. Shock 50, 351–359 (2018).
pubmed: 29117064
pmcid: 6072368
doi: 10.1097/SHK.0000000000001050
Hisaoka-Nakashima, K. et al. Corticosterone induces HMGB1 release in primary cultured rat cortical astrocytes: involvement of pannexin-1 and P2X7 receptor-dependent mechanisms. Cells 9, 1068 (2020).
pmcid: 7290518
doi: 10.3390/cells9051068
Lai, P. F. et al. ATF3 Protects against LPS-induced inflammation in mice via inhibiting HMGB1 expression. Evid. Based Complement. Altern. Med. 2013, 716481 (2013).
doi: 10.1155/2013/716481
Kawakami, M. et al. The role of CCR7 in allergic airway inflammation induced by house dust mite exposure. Cell. Immunol. 275, 24–32 (2012).
pubmed: 22521241
doi: 10.1016/j.cellimm.2012.03.009
Ogiku, M., Kono, H., Hara, M., Tsuchiya, M. & Fujii, H. Glycyrrhizin prevents liver injury by inhibition of high-mobility group box 1 production by Kupffer cells after ischemia-reperfusion in rats. J. Pharmacol. Exp. Ther. 339, 93–98 (2011).
pubmed: 21737537
doi: 10.1124/jpet.111.182592
Nakamura, A. et al. Increased susceptibility to LPS-induced endotoxin shock in secretory leukoprotease inhibitor (SLPI)-deficient mice. J. Exp. Med 197, 669–674 (2003).
pubmed: 12615907
pmcid: 2193830
doi: 10.1084/jem.20021824
Cai, C. et al. Complement factor 3 deficiency attenuates hemorrhagic shock-related hepatic injury and systemic inflammatory response syndrome. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1175–R1182 (2010).
pubmed: 20702808
pmcid: 2980448
doi: 10.1152/ajpregu.00282.2010
Fujioka, M. et al. ADAMTS13 gene deletion enhances plasma high-mobility group box1 elevation and neuroinflammation in brain ischemia-reperfusion injury. Neurol. Sci. 33, 1107–1115 (2012).
pubmed: 22212812
doi: 10.1007/s10072-011-0913-9
Noguchi, T. et al. Gefitinib initiates sterile inflammation by promoting IL-1beta and HMGB1 release via two distinct mechanisms. Cell Death Dis. 12, 49 (2021).
pubmed: 33414419
pmcid: 7791030
doi: 10.1038/s41419-020-03335-7
Nguewa, P. A., Fuertes, M. A., Valladares, B., Alonso, C. & Perez, J. M. Poly(ADP-ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications. Prog. Biophys. Mol. Biol. 88, 143–172 (2005).
pubmed: 15561303
doi: 10.1016/j.pbiomolbio.2004.01.001
Woodhouse, B. C. & Dianov, G. L. Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair (Amst.) 7, 1077–1086 (2008).
doi: 10.1016/j.dnarep.2008.03.009
Pandey, N. & Black, B. E. Rapid detection and signaling of DNA damage by PARP-1. Trends Biochem. Sci. 46, 744–757 (2021).
pubmed: 33674152
doi: 10.1016/j.tibs.2021.01.014
Ni, S. Y. et al. Puerarin alleviates lipopolysaccharide-induced myocardial fibrosis by inhibiting PARP-1 to prevent HMGB1-mediated TLR4-NF-kappaB signaling pathway. Cardiovasc. Toxicol. 20, 482–491 (2020).
pubmed: 32236896
doi: 10.1007/s12012-020-09571-9
Jagtap, P. & Szabo, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Disco. 4, 421–440 (2005).
doi: 10.1038/nrd1718
Qin, W. D. et al. Low shear stress induced HMGB1 translocation and release via PECAM-1/PARP-1 pathway to induce inflammation response. PLoS ONE 10, e0120586 (2015).
pubmed: 25793984
pmcid: 4368774
doi: 10.1371/journal.pone.0120586
Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).
pubmed: 19524513
pmcid: 2727676
doi: 10.1016/j.cell.2009.05.037
He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009).
pubmed: 19524512
doi: 10.1016/j.cell.2009.05.021
Thapa, R. J. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl Acad. Sci. USA 110, E3109–E3118 (2013).
pubmed: 23898178
pmcid: 3746924
doi: 10.1073/pnas.1301218110
Yuan, J., Amin, P. & Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20, 19–33 (2019).
pubmed: 30467385
pmcid: 6342007
doi: 10.1038/s41583-018-0093-1
Murakami, Y. et al. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ. 21, 270–277 (2014).
pubmed: 23954861
doi: 10.1038/cdd.2013.109
Liu, Y. et al. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death Dis. 12, 62 (2021).
pubmed: 33431831
pmcid: 7801412
doi: 10.1038/s41419-020-03365-1
Allocca, M., Corrigan, J. J., Mazumder, A., Fake, K. R. & Samson, L. D. Inflammation, necrosis, and the kinase RIP3 are key mediators of AAG-dependent alkylation-induced retinal degeneration. Sci. Signal 12, eaau9216 (2019).
pubmed: 30755477
pmcid: 7150588
doi: 10.1126/scisignal.aau9216
Aits, S. & Jaattela, M. Lysosomal cell death at a glance. J. Cell Sci. 126, 1905–1912 (2013).
pubmed: 23720375
doi: 10.1242/jcs.091181
Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019).
pubmed: 30948788
pmcid: 6796845
doi: 10.1038/s41422-019-0164-5
Morinaga, Y. et al. Legionella pneumophila induces cathepsin B-dependent necrotic cell death with releasing high mobility group box1 in macrophages. Respir. Res. 11, 158 (2010).
pubmed: 21092200
pmcid: 3003236
doi: 10.1186/1465-9921-11-158
Zhang, Y., Chen, Y., Zhang, Y., Li, P. L. & Li, X. Contribution of cathepsin B-dependent Nlrp3 inflammasome activation to nicotine-induced endothelial barrier dysfunction. Eur. J. Pharmacol. 865, 172795 (2019).
pubmed: 31733211
pmcid: 6925381
doi: 10.1016/j.ejphar.2019.172795
Hamalisto, S. et al. Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation. Nat. Commun. 11, 229 (2020).
pubmed: 31932607
pmcid: 6957743
doi: 10.1038/s41467-019-14009-0
Chen, L. et al. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis. 9, 597 (2018).
pubmed: 29789550
pmcid: 5964241
doi: 10.1038/s41419-018-0538-5
Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q. & Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122, 877–902 (2018).
pubmed: 29700084
pmcid: 5926825
doi: 10.1161/CIRCRESAHA.117.311401
Chen, X., Kang, R., Kroemer, G. & Tang, D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 18, 280–296 (2021).
pubmed: 33514910
doi: 10.1038/s41571-020-00462-0
Brambilla, L., Martorana, F., Guidotti, G. & Rossi, D. Dysregulation of astrocytic HMGB1 signaling in amyotrophic lateral sclerosis. Front. Neurosci. 12, 622 (2018).
pubmed: 30210286
pmcid: 6123379
doi: 10.3389/fnins.2018.00622
Yon, J. M., Kim, Y. B. & Park, D. The ethanol fraction of white rose petal extract abrogates excitotoxicity-induced neuronal damage in vivo and in vitro through inhibition of oxidative stress and proinflammation. Nutrients 10, 1375 (2018).
pmcid: 6213719
doi: 10.3390/nu10101375
Lo Coco, D., Veglianese, P., Allievi, E. & Bendotti, C. Distribution and cellular localization of high mobility group box protein 1 (HMGB1) in the spinal cord of a transgenic mouse model of ALS. Neurosci. Lett. 412, 73–77 (2007).
pubmed: 17196331
doi: 10.1016/j.neulet.2006.10.063
Kang, R., Livesey, K. M., Zeh, H. J. 3rd, Lotze, M. T. & Tang, D. HMGB1 as an autophagy sensor in oxidative stress. Autophagy 7, 904–906 (2011).
pubmed: 21487246
doi: 10.4161/auto.7.8.15704
Tang, D., Kang, R., Livesey, K. M., Zeh, H. J. 3rd & Lotze, M. T. High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress. Antioxid. Redox Signal 15, 2185–2195 (2011).
pubmed: 21395369
pmcid: 3166205
doi: 10.1089/ars.2010.3666
Shichita, T. et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 18, 911–917 (2012).
pubmed: 22610280
doi: 10.1038/nm.2749
Vezzoli, M. et al. High-mobility group box 1 release and redox regulation accompany regeneration and remodeling of skeletal muscle. Antioxid. Redox Signal 15, 2161–2174 (2011).
pubmed: 21294652
doi: 10.1089/ars.2010.3341
Nagata, S., Nagase, H., Kawane, K., Mukae, N. & Fukuyama, H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ. 10, 108–116 (2003).
pubmed: 12655299
doi: 10.1038/sj.cdd.4401161
Kim, S. W. & Lee, J. K. Role of HMGB1 in the interplay between NETosis and thrombosis in ischemic stroke: a review. Cells 9, 1794 (2020).
pmcid: 7464684
doi: 10.3390/cells9081794
Tohme, S. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 76, 1367–1380 (2016).
pubmed: 26759232
pmcid: 4794393
doi: 10.1158/0008-5472.CAN-15-1591
Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).
pubmed: 21389264
pmcid: 3143837
doi: 10.1126/scitranslmed.3001201
Huang, H. et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62, 600–614 (2015).
pubmed: 25855125
doi: 10.1002/hep.27841
Yamada, Y. et al. DR396, an apoptotic DNase gamma inhibitor, attenuates high mobility group box 1 release from apoptotic cells. Bioorg. Med. Chem. 19, 168–171 (2011).
pubmed: 21167721
doi: 10.1016/j.bmc.2010.11.037
Yamada, Y. et al. The release of high mobility group box 1 in apoptosis is triggered by nucleosomal DNA fragmentation. Arch. Biochem. Biophys. 506, 188–193 (2011).
pubmed: 21093407
doi: 10.1016/j.abb.2010.11.011
Keller, N. et al. Group A streptococcal DNase Sda1 impairs plasmacytoid dendritic cells’ type 1 interferon response. J. Invest. Dermatol. 139, 1284–1293 (2019).
pubmed: 30543898
doi: 10.1016/j.jid.2018.11.027
Liu, B. et al. Inflammatory caspases drive pyroptosis in acute lung injury. Front. Pharmacol. 12, 631256 (2021).
pubmed: 33613295
pmcid: 7892432
doi: 10.3389/fphar.2021.631256
Kopeina, G. S., Prokhorova, E. A., Lavrik, I. N. & Zhivotovsky, B. Alterations in the nucleocytoplasmic transport in apoptosis: caspases lead the way. Cell Prolif. 51, e12467 (2018).
pubmed: 29947118
pmcid: 6528946
doi: 10.1111/cpr.12467
Mandal, R., Barron, J. C., Kostova, I., Becker, S. & Strebhardt, K. Caspase-8: the double-edged sword. Biochim Biophys. Acta Rev. Cancer 1873, 188357 (2020).
pubmed: 32147543
doi: 10.1016/j.bbcan.2020.188357
Zhao, Q. et al. Fenofibrate protects against acute myocardial I/R injury in rat by suppressing mitochondrial apoptosis as decreasing cleaved caspase-9 activation. Cancer Biomark. 19, 455–463 (2017).
pubmed: 28582851
doi: 10.3233/CBM-170572
Makazan, Z., Saini, H. K. & Dhalla, N. S. Role of oxidative stress in alterations of mitochondrial function in ischemic-reperfused hearts. Am. J. Physiol. Heart Circ. Physiol. 292, H1986–H1994 (2007).
pubmed: 17172267
doi: 10.1152/ajpheart.01214.2006
Briard, B., Malireddi, R. K. S. & Kanneganti, T. D. Role of inflammasomes/pyroptosis and PANoptosis during fungal infection. PLoS Pathog. 17, e1009358 (2021).
pubmed: 33735255
pmcid: 7971547
doi: 10.1371/journal.ppat.1009358
LeBlanc, P. M. et al. An immunogenic peptide in the A-box of HMGB1 protein reverses apoptosis-induced tolerance through RAGE receptor. J. Biol. Chem. 289, 7777–7786 (2014).
pubmed: 24474694
pmcid: 3953289
doi: 10.1074/jbc.M113.541474
New, J. & Thomas, S. M. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy 15, 1682–1693 (2019).
pubmed: 30894055
pmcid: 6735501
doi: 10.1080/15548627.2019.1596479
Kim, Y. H. et al. Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy 17, 2345–2362 (2021).
pubmed: 33017561
doi: 10.1080/15548627.2020.1826690
Wen, Q., Liu, J., Kang, R., Zhou, B. & Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 510, 278–283 (2019).
pubmed: 30686534
doi: 10.1016/j.bbrc.2019.01.090
Tang, D. et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190, 881–892 (2010).
pubmed: 20819940
pmcid: 2935581
doi: 10.1083/jcb.200911078
Kang, R., Livesey, K. M., Zeh, H. J. 3rd, Lotze, M. T. & Tang, D. Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy 7, 1256–1258 (2011).
pubmed: 21691146
doi: 10.4161/auto.7.10.16753
Liu, X. et al. Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells. Cell Death Dis. 9, 1048 (2018).
pubmed: 30323180
pmcid: 6189137
doi: 10.1038/s41419-018-1006-y
Xu, T., Jiang, L. & Wang, Z. The progression of HMGB1-induced autophagy in cancer biology. Onco Targets Ther. 12, 365–377 (2019).
pubmed: 30643434
doi: 10.2147/OTT.S185876
Chen, X., Yu, C., Kang, R., Kroemer, G. & Tang, D. Cellular degradation systems in ferroptosis. Cell Death Differ. 28, 1135–1148 (2021).
pubmed: 33462411
pmcid: 8027807
doi: 10.1038/s41418-020-00728-1
Liu, J. et al. Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem. Biol. 27, 420–435 (2020).
pubmed: 32160513
pmcid: 7166192
doi: 10.1016/j.chembiol.2020.02.005
Chen, X., Li, J., Kang, R., Klionsky, D. J. & Tang, D. Ferroptosis: machinery and regulation. Autophagy 17, 2054–2081 (2020).
pubmed: 32804006
pmcid: 8496712
doi: 10.1080/15548627.2020.1810918
Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).
pubmed: 27245739
pmcid: 4968231
doi: 10.1080/15548627.2016.1187366
Liu, J., Kuang, F., Kang, R. & Tang, D. Alkaliptosis: a new weapon for cancer therapy. Cancer Gene Ther. 27, 267–269 (2020).
pubmed: 31467365
doi: 10.1038/s41417-019-0134-6
Song, X. et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154, 1480–1493 (2018).
pubmed: 29248440
doi: 10.1053/j.gastro.2017.12.004
Zhu, S., Liu, J., Kang, R., Yang, M. & Tang, D. Targeting NF-kappaB-dependent alkaliptosis for the treatment of venetoclax-resistant acute myeloid leukemia cells. Biochem. Biophys. Res. Commun. 562, 55–61 (2021).
pubmed: 34034094
doi: 10.1016/j.bbrc.2021.05.049
Fang, X. et al. The HMGB1-AGER-STING1 pathway mediates the sterile inflammatory response to alkaliptosis. Biochem. Biophys. Res. Commun. 560, 165–171 (2021).
pubmed: 33992959
doi: 10.1016/j.bbrc.2021.05.003