The mechanism of HMGB1 secretion and release.


Journal

Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880

Informations de publication

Date de publication:
02 2022
Historique:
received: 26 07 2021
accepted: 04 11 2021
revised: 13 10 2021
pubmed: 27 2 2022
medline: 20 4 2022
entrez: 26 2 2022
Statut: ppublish

Résumé

High mobility group box 1 (HMGB1) is a nonhistone nuclear protein that has multiple functions according to its subcellular location. In the nucleus, HMGB1 is a DNA chaperone that maintains the structure and function of chromosomes. In the cytoplasm, HMGB1 can promote autophagy by binding to BECN1 protein. After its active secretion or passive release, extracellular HMGB1 usually acts as a damage-associated molecular pattern (DAMP) molecule, regulating inflammation and immune responses through different receptors or direct uptake. The secretion and release of HMGB1 is fine-tuned by a variety of factors, including its posttranslational modification (e.g., acetylation, ADP-ribosylation, phosphorylation, and methylation) and the molecular machinery of cell death (e.g., apoptosis, pyroptosis, necroptosis, alkaliptosis, and ferroptosis). In this minireview, we introduce the basic structure and function of HMGB1 and focus on the regulatory mechanism of HMGB1 secretion and release. Understanding these topics may help us develop new HMGB1-targeted drugs for various conditions, especially inflammatory diseases and tissue damage.

Identifiants

pubmed: 35217834
doi: 10.1038/s12276-022-00736-w
pii: 10.1038/s12276-022-00736-w
pmc: PMC8894452
doi:

Substances chimiques

Alarmins 0
HMGB1 Protein 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

91-102

Informations de copyright

© 2022. The Author(s).

Références

Goodwin, G. H. & Johns, E. W. Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids. Eur. J. Biochem. 40, 215–219 (1973).
pubmed: 4772679 doi: 10.1111/j.1432-1033.1973.tb03188.x
Xue, J. et al. HMGB1 as a therapeutic target in disease. J. Cell. Physiol. 236, 3406–3419 (2021).
pubmed: 33107103 doi: 10.1002/jcp.30125
Bianchi, M. E. & Beltrame, M. Flexing DNA: HMG-box proteins and their partners. Am. J. Hum. Genet. 63, 1573–1577 (1998).
pubmed: 9837808 pmcid: 1377627 doi: 10.1086/302170
Thomas, J. O. H. M. G. I and 2 architectural DNA-binding proteins. Biochem. Soc. Trans. 4, 395–401 (2001).
doi: 10.1042/bst0290395
Wang, H. C. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 (1999).
pubmed: 10398600 doi: 10.1126/science.285.5425.248
Huttunen, H. J. & Rauvala, H. Amphoterin as an extracellular regulator of cell motility: from discovery to disease. J. Intern. Med. 255, 351–366 (2004).
pubmed: 14871459 doi: 10.1111/j.1365-2796.2003.01301.x
Kang, R. et al. HMGB1 in health and disease. Mol. Asp. Med. 40, 1–116 (2014).
doi: 10.1016/j.mam.2014.05.001
Sun, R. et al. PCV2 induces reactive oxygen species to promote nucleocytoplasmic translocation of the viral DNA binding protein HMGB1 to enhance its replication. J. Virol. 94, e00238–20 (2020).
pubmed: 32321806 pmcid: 7307167 doi: 10.1128/JVI.00238-20
Wang, B. et al. Minocycline prevents the depressive-like behavior through inhibiting the release of HMGB1 from microglia and neurons. Brain. Behav. Immun. 88, 132–143 (2020).
pubmed: 32553784 doi: 10.1016/j.bbi.2020.06.019
Gao, S. Q. et al. Neuronal HMGB1 in nucleus accumbens regulates cocaine reward memory. Addict. Biol. 25, e12739 (2020).
pubmed: 31056833 doi: 10.1111/adb.12739
Deng, M., Scott, M. J., Fan, J. & Billiar, T. R. Location is the key to function: HMGB1 in sepsis and trauma-induced inflammation. J. Leukoc. Biol. 106, 161–169 (2019).
pubmed: 30946496
Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).
pubmed: 12110890 doi: 10.1038/nature00858
Pusterla, T., de Marchis, F., Palumbo, R. & Bianchi, M. E. High mobility group B2 is secreted by myeloid cells and has mitogenic and chemoattractant activities similar to high mobility group B1. Autoimmunity 42, 308-310 (2009).
doi: 10.1080/08916930902831845
Yang, D. et al. High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. J. Exp. Med. 209, 157–171 (2012).
pubmed: 22184635 pmcid: 3260868 doi: 10.1084/jem.20101354
Pellegrini, L. et al. HMGB1 and repair: focus on the heart. Pharmacol. Ther. 196, 160–182 (2019).
pubmed: 30529040 doi: 10.1016/j.pharmthera.2018.12.005
Chen, R. et al. HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon 6, e05672 (2020).
pubmed: 33313438 pmcid: 7720697 doi: 10.1016/j.heliyon.2020.e05672
Bustin, M., Neihart, N. K. & Fagan, J. B. mRNA of chromosomal proteins HMG-1 and HMG-2 are polyadenylated. Biochem. Biophys. Res. Commun. 101, 893–897 (1981).
pubmed: 6118142 doi: 10.1016/0006-291X(81)91833-7
Ferrari, S., Ronfani, L., Calogero, S. & Bianchi, M. E. The mouse gene coding for high mobility group 1 protein (HMG1). J. Biol. Chem. 269, 28803–28808 (1994).
pubmed: 7961836 doi: 10.1016/S0021-9258(19)61977-0
Kwak, M. S. et al. Immunological significance of HMGB1 post-translational modification and redox biology. Front. Immunol. 11, 1189 (2020).
pubmed: 32587593 pmcid: 7297982 doi: 10.3389/fimmu.2020.01189
Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. Embo. J. 22, 5551–5560 (2003).
pubmed: 14532127 pmcid: 213771 doi: 10.1093/emboj/cdg516
Huttunen, H. J., Fages, C., Kuja-Panula, J., Ridley, A. J. & Rauvala, H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res. 62, 4805–4811 (2002).
pubmed: 12183440
Gong, W., Li, Y., Chao, F., Huang, G. & He, F. Amino acid residues 201–205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1. J. Biomed. Sci. 16, 83 (2009).
pubmed: 19751520 pmcid: 2754419 doi: 10.1186/1423-0127-16-83
Li, J. et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol. Med. 9, 37–45 (2003).
pubmed: 12765338 pmcid: 1430376 doi: 10.1007/BF03402105
Gong, W. et al. The anti-inflammatory activity of HMGB1 A box is enhanced when fused with C-terminal acidic tail. J. Biomed. Biotechnol. 2010, 915234 (2010).
pubmed: 20379370 pmcid: 2850157 doi: 10.1155/2010/915234
Lu, B. et al. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev. Clin. Immunol. 10, 713–727 (2014).
pubmed: 24746113 pmcid: 4056343 doi: 10.1586/1744666X.2014.909730
Tang, Y. et al. Regulation of posttranslational modifications of HMGB1 during immune responses. Antioxid. Redox Signal 24, 620–634 (2016).
pubmed: 26715031 pmcid: 5349223 doi: 10.1089/ars.2015.6409
Tang, D. et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J. Leukoc. Biol. 81, 741–747 (2007).
pubmed: 17135572 doi: 10.1189/jlb.0806540
Dave, S. H. et al. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J. Leukoc. Biol. 86, 633–643 (2009).
pubmed: 19454652 pmcid: 2735284 doi: 10.1189/jlb.1008662
Sitapara, R. A. et al. The alpha7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Mol. Med. 26, 98 (2020).
pubmed: 33126860 pmcid: 7596622 doi: 10.1186/s10020-020-00224-9
Dhupar, R. et al. Interferon regulatory factor 1 mediates acetylation and release of high mobility group box 1 from hepatocytes during murine liver ischemia-reperfusion injury. Shock 35, 293–301 (2011).
pubmed: 20856174 doi: 10.1097/SHK.0b013e3181f6aab0
Lu, B. et al. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc. Natl Acad. Sci. USA 111, 3068–3073 (2014).
pubmed: 24469805 pmcid: 3939889 doi: 10.1073/pnas.1316925111
Rabadi, M. M. et al. High-mobility group box 1 is a novel deacetylation target of Sirtuin1. Kidney Int. 87, 95–108 (2015).
pubmed: 24940804 doi: 10.1038/ki.2014.217
Lee, W., Ku, S. K. & Bae, J. S. Zingerone reduces HMGB1-mediated septic responses and improves survival in septic mice. Toxicol. Appl. Pharmacol. 329, 202–211 (2017).
pubmed: 28610995 doi: 10.1016/j.taap.2017.06.006
Xu, S. et al. Evidence for SIRT1 mediated HMGB1 release from kidney cells in the early stages of hemorrhagic shock. Front. Physiol. 10, 854 (2019).
pubmed: 31333497 pmcid: 6625367 doi: 10.3389/fphys.2019.00854
Ito, N. et al. Cytolytic cells induce HMGB1 release from melanoma cell lines. J. Leukoc. Biol. 81, 75–83 (2007).
pubmed: 16968820 doi: 10.1189/jlb.0306169
Oh, Y. J. et al. HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J. Immunol. 182, 5800–5809 (2009).
pubmed: 19380828 doi: 10.4049/jimmunol.0801873
Davis, K. et al. Poly(ADP-ribosyl)ation of high mobility group box 1 (HMGB1) protein enhances inhibition of efferocytosis. Mol. Med. 18, 359–369 (2012).
pubmed: 22204001 doi: 10.2119/molmed.2011.00203
Ge, X. et al. High mobility group box-1 (HMGB1) participates in the pathogenesis of alcoholic liver disease (ALD). J. Biol. Chem. 289, 22672–22691 (2014).
pubmed: 24928512 pmcid: 4132775 doi: 10.1074/jbc.M114.552141
Kim, Y. H. et al. N-linked glycosylation plays a crucial role in the secretion of HMGB1. J. Cell Sci. 129, 29–38 (2016).
pubmed: 26567221
Kwak, M. S. et al. Peroxiredoxin-mediated disulfide bond formation is required for nucleocytoplasmic translocation and secretion of HMGB1 in response to inflammatory stimuli. Redox Biol. 24, 101203 (2019).
pubmed: 31026770 pmcid: 6482348 doi: 10.1016/j.redox.2019.101203
Wu, F., Zhao, Z. H., Ding, S. T., Wu, H. H. & Lu, J. J. High mobility group box 1 protein is methylated and transported to cytoplasm in clear cell renal cell carcinoma. Asian Pac. J. Cancer Prev. 14, 5789–5795 (2013).
pubmed: 24289579 doi: 10.7314/APJCP.2013.14.10.5789
Yang, H., Wang, H., Chavan, S. S. & Andersson, U. High mobility group box protein 1 (HMGB1): the prototypical endogenous danger molecule. Mol. Med. 21(Suppl 1), S6–S12 (2015).
pubmed: 26605648 pmcid: 4661054 doi: 10.2119/molmed.2015.00087
Kong, Q. et al. SIRT6-PARP1 is involved in HMGB1 polyADP-ribosylation and acetylation and promotes chemotherapy-induced autophagy in leukemia. Cancer Biol. Ther. 21, 320–331 (2020).
pubmed: 31928132 pmcid: 7515491 doi: 10.1080/15384047.2019.1702397
Li, Y., Xie, J., Li, X. & Fang, J. Poly (ADP-ribosylation) of HMGB1 facilitates its acetylation and promotes HMGB1 translocation-associated chemotherapy-induced autophagy in leukaemia cells. Oncol. Lett. 19, 368–378 (2020).
pubmed: 31897149
Yang, M. et al. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy. Autophagy 11, 214–224 (2015).
pubmed: 25607248 pmcid: 4502776 doi: 10.4161/15548627.2014.994400
Raucci, A. et al. The Janus face of HMGB1 in heart disease: a necessary update. Cell. Mol. Life Sci. 76, 211–229 (2019).
pubmed: 30306212 doi: 10.1007/s00018-018-2930-9
Cai, X., Biswas, I., Panicker, S. R., Giri, H. & Rezaie, A. R. Activated protein C inhibits lipopolysaccharide-mediated acetylation and secretion of high-mobility group box 1 in endothelial cells. J. Thromb. Haemost. 17, 803–817 (2019).
pubmed: 30865333 pmcid: 6494677 doi: 10.1111/jth.14425
Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347–358 (1975).
pubmed: 1096303 doi: 10.1126/science.1096303
Volchuk, A., Ye, A., Chi, L., Steinberg, B. E. & Goldenberg, N. M. Indirect regulation of HMGB1 release by gasdermin D. Nat. Commun. 11, 4561 (2020).
pubmed: 32917873 pmcid: 7486936 doi: 10.1038/s41467-020-18443-3
Lee, W. J. et al. Profibrogenic effect of high-mobility group box protein-1 in human dermal fibroblasts and its excess in keloid tissues. Sci. Rep. 8, 8434 (2018).
pubmed: 29849053 pmcid: 5976629 doi: 10.1038/s41598-018-26501-6
Pisetsky, D. S. The expression of HMGB1 on microparticles released during cell activation and cell death in vitro and in vivo. Mol. Med. 20, 158–163 (2014).
pubmed: 24618884 pmcid: 4002850 doi: 10.2119/molmed.2014.00014
min, H. J. et al. Th2 cytokines-DUOX2-ROS-HMGB1 translocation axis is important in the pathogenesis of allergic rhinitis. Clin. Sci. 135, 483–494 (2021).
doi: 10.1042/CS20201212
min, H. J. et al. ROS-dependent HMGB1 secretion upregulates IL-8 in upper airway epithelial cells under hypoxic condition. Mucosal Immunol. 10, 685–694 (2017).
pubmed: 27624778 doi: 10.1038/mi.2016.82
Sekiguchi, F. et al. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. Neuropharmacology 141, 201–213 (2018).
pubmed: 30179591 doi: 10.1016/j.neuropharm.2018.08.040
Cui, T. et al. Oxidative stress-induced HMGB1 release from melanocytes: a paracrine mechanism underlying the cutaneous inflammation in vitiligo. J. Invest. Dermatol. 139, 2174–2184.e2174 (2019).
pubmed: 30998983 doi: 10.1016/j.jid.2019.03.1148
Tsung, A. et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J. Exp. Med. 204, 2913–2923 (2007).
pubmed: 17984303 pmcid: 2118528 doi: 10.1084/jem.20070247
Tang, D. et al. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. Am. J. Respir. Cell Mol. Biol. 41, 651–660 (2009).
pubmed: 19265175 pmcid: 2784404 doi: 10.1165/rcmb.2008-0119OC
Kato, S. et al. Edaravone, a novel free radical scavenger, reduces high-mobility group box 1 and prolongs survival in a neonatal sepsis model. Shock 32, 586–592 (2009).
pubmed: 19295481 doi: 10.1097/SHK.0b013e3181a2b886
Zhang, Z. W. et al. Antioxidant inhibits HMGB1 expression and reduces pancreas injury in rats with severe acute pancreatitis. Dig. Dis. Sci. 55, 2529–2536 (2010).
pubmed: 19997973 doi: 10.1007/s10620-009-1073-0
Hosakote, Y. M., Brasier, A. R., Casola, A., Garofalo, R. P. & Kurosky, A. Respiratory syncytial virus infection triggers epithelial HMGB1 release as a damage-associated molecular pattern promoting a monocytic inflammatory response. J. Virol. 90, 9618–9631 (2016).
pubmed: 27535058 pmcid: 5068515 doi: 10.1128/JVI.01279-16
Delucchi, F. et al. Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho-functional ventricular remodeling in type-1 diabetic rats. PLoS ONE 7, e39836 (2012).
pubmed: 22768138 pmcid: 3387239 doi: 10.1371/journal.pone.0039836
Ahmed, S. M., Luo, L., Namani, A., Wang, X. J. & Tang, X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys. Acta Mol. Basis Dis. 1863, 585–597 (2017).
pubmed: 27825853 doi: 10.1016/j.bbadis.2016.11.005
Vijayan, V., Wagener, F. & Immenschuh, S. The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochem. Pharmacol. 153, 159–167 (2018).
pubmed: 29452096 doi: 10.1016/j.bcp.2018.02.010
Wang, J., Hu, X. & Jiang, H. Nrf-2–HO-1–HMGB1 axis: an important therapeutic approach for protection against myocardial ischemia and reperfusion injury. Int. J. Cardiol. 172, 223–224 (2014).
pubmed: 24456890 doi: 10.1016/j.ijcard.2013.12.273
Liu, C., Zhu, C., Wang, G., Xu, R. & Zhu, Y. Higenamine regulates Nrf2-HO-1-Hmgb1 axis and attenuates intestinal ischemia-reperfusion injury in mice. Inflamm. Res. 64, 395–403 (2015).
pubmed: 25929435 doi: 10.1007/s00011-015-0817-x
Wang, J., Hu, X., Xie, J., Xu, W. & Jiang, H. Beta-1-adrenergic receptors mediate Nrf2-HO-1-HMGB1 axis regulation to attenuate hypoxia/reoxygenation-induced cardiomyocytes injury in vitro. Cell. Physiol. Biochem. 35, 767–777 (2015).
pubmed: 25634756 doi: 10.1159/000369736
Yu, Y. et al. Hydrogen gas protects against intestinal injury in wild type but not NRF2 knockout mice with severe sepsis by regulating HO-1 and HMGB1 release. Shock 48, 364–370 (2017).
pubmed: 28234792 doi: 10.1097/SHK.0000000000000856
Faridvand, Y. et al. Nrf2 activation and down-regulation of HMGB1 and MyD88 expression by amnion membrane extracts in response to the hypoxia-induced injury in cardiac H9c2 cells. Biomed. Pharmacother. 109, 360–368 (2019).
pubmed: 30399570 doi: 10.1016/j.biopha.2018.10.035
Rivera-Perez, J. et al. Epigallocatechin 3-gallate has a neuroprotective effect in retinas of rabbits with ischemia/reperfusion through the activation of Nrf2/HO-1. Int. J. Mol. Sci. 21, 3716 (2020).
pmcid: 7279438 doi: 10.3390/ijms21103716
Park, E. J., Kim, Y. M. & Chang, K. C. Hemin reduces HMGB1 release by UVB in an AMPK/HO-1-dependent PAthway in Human Keratinocytes HaCaT cells. Arch. Med. Res. 48, 423–431 (2017).
pubmed: 29089150 doi: 10.1016/j.arcmed.2017.10.007
Mazur-Bialy, A. I. & Pochec, E. The time-course of antioxidant irisin activity: role of the Nrf2/HO-1/HMGB1 axis. Antioxidants 10, 88 (2021).
pubmed: 33440644 pmcid: 7827448 doi: 10.3390/antiox10010088
Qu, J. et al. Downregulation of HMGB1 is required for the protective role of Nrf2 in EMT-mediated PF. J. Cell. Physiol. 234, 8862–8872 (2019).
pubmed: 30370641 doi: 10.1002/jcp.27548
Chen, H., Chen, X., Luo, Y. & Shen, J. Potential molecular targets of peroxynitrite in mediating blood-brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic. Res. 52, 1220–1239 (2018).
pubmed: 30468092 doi: 10.1080/10715762.2018.1521519
Tsoyi, K. et al. Carbon monoxide from CORM-2 reduces HMGB1 release through regulation of IFN-beta/JAK2/STAT-1/INOS/NO signaling but not COX-2 in TLR-activated macrophages. Shock 34, 608–614 (2010).
pubmed: 20442692 doi: 10.1097/SHK.0b013e3181e46f15
Wang, S. et al. High-mobility group box 1 protein antagonizes the immunosuppressive capacity and therapeutic effect of mesenchymal stem cells in acute kidney injury. J. Transl. Med. 18, 175 (2020).
pubmed: 32312307 pmcid: 7169035 doi: 10.1186/s12967-020-02334-8
Zhu, Z. et al. HMGB1 impairs endothelium-dependent relaxation in diabetes through TLR4/eNOS pathway. FASEB J. 34, 8641–8652 (2020).
pubmed: 32359123 doi: 10.1096/fj.202000242R
Gliozzi, M. et al. Modulation of nitric oxide synthases by oxidized LDLs: role in vascular inflammation and atherosclerosis development. Int. J. Mol. Sci. 20, 3294 (2019).
pmcid: 6651385 doi: 10.3390/ijms20133294
McCord, J. M. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312, 159–163 (1985).
pubmed: 2981404 doi: 10.1056/NEJM198501173120305
Shen, J. et al. Nitric oxide down-regulates caveolin-1 expression in rat brains during focal cerebral ischemia and reperfusion injury. J. Neurochem. 96, 1078–1089 (2006).
pubmed: 16417587 doi: 10.1111/j.1471-4159.2005.03589.x
Chen, X. M., Chen, H. S., Xu, M. J. & Shen, J. G. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol. Sin. 34, 67–77 (2013).
pubmed: 22842734 doi: 10.1038/aps.2012.82
Crow, J. P. & Beckman, J. S. The role of peroxynitrite in nitric oxide-mediated toxicity. Curr. Top. Microbiol. Immunol. 196, 57–73 (1995).
pubmed: 7634825
Loukili, N. et al. Peroxynitrite induces HMGB1 release by cardiac cells in vitro and HMGB1 upregulation in the infarcted myocardium in vivo. Cardiovasc. Res. 89, 586–594 (2011).
pubmed: 21113057 doi: 10.1093/cvr/cvq373
Chen, H. et al. Glycyrrhizin prevents hemorrhagic transformation and improves neurological outcome in ischemic stroke with delayed thrombolysis through targeting peroxynitrite-mediated HMGB1 signaling. Transl. Stroke Res. 11, 967–982 (2020).
pubmed: 31872339 doi: 10.1007/s12975-019-00772-1
Kikuchi, K. et al. The free radical scavenger edaravone rescues rats from cerebral infarction by attenuating the release of high-mobility group box-1 in neuronal cells. J. Pharmacol. Exp. Ther. 329, 865–874 (2009).
pubmed: 19293391 doi: 10.1124/jpet.108.149484
Xu, M. et al. Baicalin can scavenge peroxynitrite and ameliorate endogenous peroxynitrite-mediated neurotoxicity in cerebral ischemia-reperfusion injury. J. Ethnopharmacol. 150, 116–124 (2013).
pubmed: 23973788 doi: 10.1016/j.jep.2013.08.020
Wang, H. & Liu, D. Baicalin inhibits high-mobility group box 1 release and improves survival in experimental sepsis. Shock 41, 324–330 (2014).
pubmed: 24430548 doi: 10.1097/SHK.0000000000000122
Chandrashekaran, V. et al. HMGB1-RAGE pathway drives peroxynitrite signaling-induced IBD-like inflammation in murine nonalcoholic fatty liver disease. Redox Biol. 13, 8–19 (2017).
pubmed: 28551086 pmcid: 5447385 doi: 10.1016/j.redox.2017.05.005
Chen, H. et al. Baicalin attenuates blood-brain barrier disruption and hemorrhagic transformation and improves neurological outcome in ischemic stroke rats with delayed t-PA treatment: involvement of ONOO(-)-MMP-9 pathway. Transl. Stroke Res. 9, 515–529 (2018).
pubmed: 29275501 doi: 10.1007/s12975-017-0598-3
Park, H. S. et al. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol. 173, 3589–3593 (2004).
pubmed: 15356101 doi: 10.4049/jimmunol.173.6.3589
Fan, J. et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J. Immunol. 178, 6573–6580 (2007).
pubmed: 17475888 doi: 10.4049/jimmunol.178.10.6573
Tang, D., Kang, R., Zeh, H. Jr & Lotze, M. T. High-mobility group box 1, oxidative stress, and disease. Antioxid. Redox Signal 14, 1315–1335 (2011).
pubmed: 20969478 pmcid: 3048826 doi: 10.1089/ars.2010.3356
Zhao, P. et al. HMGB1 release by H
doi: 10.1038/cddiscovery.2017.8
Hwang, S. M., Lee, J. Y., Park, C. K. & Kim, Y. H. The role of TRP channels and PMCA in brain disorders: intracellular calcium and pH homeostasis. Front Cell Dev. Biol. 9, 584388 (2021).
pubmed: 33585474 pmcid: 7876282 doi: 10.3389/fcell.2021.584388
Irvine, R. 20 years of Ins(1,4,5)P3,and 40 years before. Nat. Rev. Mol. Cell. Biol. 4, 586–590 (2003).
pubmed: 12838341 doi: 10.1038/nrm1152
Tu, C. L., Chang, W. & Bikle, D. D. Phospholipase cgamma1 is required for activation of store-operated channels in human keratinocytes. J. Invest. Dermatol. 125, 187–197 (2005).
doi: 10.1111/j.0022-202X.2004.23544.x
Carafoli, E. & Krebs, J. Why calcium? How calcium became the best communicator. J. Biol. Chem. 291, 20849–20857 (2016).
pubmed: 27462077 pmcid: 5076498 doi: 10.1074/jbc.R116.735894
Bhosale, G., Sharpe, J. A., Sundier, S. Y. & Duchen, M. R. Calcium signaling as a mediator of cell energy demand and a trigger to cell death. Ann. N. Y. Acad. Sci. 1350, 107–116 (2015).
pubmed: 26375864 pmcid: 4949562 doi: 10.1111/nyas.12885
Criddle, D. N. Reactive oxygen species, Ca(2+) stores and acute pancreatitis; a step closer to therapy? Cell Calcium 60, 180–189 (2016).
pubmed: 27229361 doi: 10.1016/j.ceca.2016.04.007
Zhang, X. et al. Calcium/calmodulin-dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophages. J. Immunol. 181, 5015–5023 (2008).
pubmed: 18802105 doi: 10.4049/jimmunol.181.7.5015
Peng, H. H. et al. Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1. Sci. Rep. 7, 16628 (2017).
pubmed: 29192209 pmcid: 5709501 doi: 10.1038/s41598-017-16778-4
Tian, T. et al. Sphingosine kinase 1 regulates HMGB1 translocation by directly interacting with calcium/calmodulin protein kinase II-delta in sepsis-associated liver injury. Cell Death Dis. 11, 1037 (2020).
pubmed: 33281190 pmcid: 7719708 doi: 10.1038/s41419-020-03255-6
Chen, S. et al. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett. 394, 22–32 (2017).
pubmed: 28216372 doi: 10.1016/j.canlet.2017.02.011
Falk, H. et al. Calcium electroporation induces tumor eradication, long-lasting immunity and cytokine responses in the CT26 colon cancer mouse model. Oncoimmunology 6, e1301332 (2017).
pubmed: 28638724 pmcid: 5467987 doi: 10.1080/2162402X.2017.1301332
Quan, H. et al. Stearoyl lysophosphatidylcholine inhibits LPS-induced extracellular release of HMGB1 through the G2A/calcium/CaMKKbeta/AMPK pathway. Eur. J. Pharmacol. 852, 125–133 (2019).
pubmed: 30797785 doi: 10.1016/j.ejphar.2019.02.038
Li, W. et al. LPS induces active HMGB1 release from hepatocytes into exosomes through the coordinated activities of TLR4 and caspase-11/GSDMD signaling. Front. Immunol. 11, 229 (2020).
pubmed: 32328059 pmcid: 7160675 doi: 10.3389/fimmu.2020.00229
Ma, L., Kim, S. J. & Oh, K. I. Calcium/calmodulin-dependent protein kinase is involved in the release of high mobility group box 1 via the interferon-beta signaling pathway. Immune Netw. 12, 148–154 (2012).
pubmed: 23091438 pmcid: 3467413 doi: 10.4110/in.2012.12.4.148
Shin, J. H. et al. Ethyl pyruvate inhibits HMGB1 phosphorylation and release by chelating calcium. Mol. Med. 20, 649–657 (2015).
pubmed: 25333921 pmcid: 4365067 doi: 10.2119/molmed.2014.00039
Turner, J. G., Dawson, J. & Sullivan, D. M. Nuclear export of proteins and drug resistance in cancer. Biochem. Pharmacol. 83, 1021–1032 (2012).
pubmed: 22209898 doi: 10.1016/j.bcp.2011.12.016
Turner, J. G. & Sullivan, D. M. CRM1-mediated nuclear export of proteins and drug resistance in cancer. Curr. Med. Chem. 15, 2648–2655 (2008).
pubmed: 18991627 doi: 10.2174/092986708786242859
Chen, Y. et al. Translocation of endogenous danger signal HMGB1 from nucleus to membrane microvesicles in macrophages. J. Cell. Physiol. 231, 2319–2326 (2016).
pubmed: 26909509 pmcid: 5021294 doi: 10.1002/jcp.25352
Wu, M. et al. KPT-330, a potent and selective CRM1 inhibitor, exhibits anti-inflammation effects and protection against sepsis. Biochem. Biophys. Res. Commun. 503, 1773–1779 (2018).
pubmed: 30064906 doi: 10.1016/j.bbrc.2018.07.112
Tang, D. et al. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and roinflammatory function in macrophages. J. Immunol. 179, 1236–1244 (2007).
pubmed: 17617616 doi: 10.4049/jimmunol.179.2.1236
Sun, Y. Q. et al. Expression of CRM1 and CDK5 shows high prognostic accuracy for gastric cancer. World J. Gastroenterol. 23, 2012–2022 (2017).
pubmed: 28373767 pmcid: 5360642 doi: 10.3748/wjg.v23.i11.2012
Wang, A. Y. & Liu, H. The past, present, and future of CRM1/XPO1 inhibitors. Stem Cell Investig. 6, 6 (2019).
pubmed: 30976603 pmcid: 6414360 doi: 10.21037/sci.2019.02.03
Ayala, A., Song, G. Y., Chung, C. S., Redmond, K. M. & Chaudry, I. H. Immune depression in polymicrobial sepsis: the role of necrotic (injured) tissue and endotoxin. Crit. Care. Med. 28, 2949–2955 (2000).
pubmed: 10966277 doi: 10.1097/00003246-200008000-00044
Chen, G. et al. Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. J. Leukoc. Biol. 76, 994–1001 (2004).
pubmed: 15331624 doi: 10.1189/jlb.0404242
Oeckinghaus, A., Hayden, M. S. & Ghosh, S. Crosstalk in NF-kappaB signaling pathways. Nat. Immunol. 12, 695–708 (2011).
pubmed: 21772278 doi: 10.1038/ni.2065
Lin, F. et al. Ox-LDL induces endothelial cell apoptosis and macrophage migration by regulating caveolin-1 phosphorylation. J. Cell. Physiol. 233, 6683–6692 (2018).
pubmed: 29323707 doi: 10.1002/jcp.26468
Hiramoto, S. et al. Cystitis-related bladder pain involves ATP-dependent HMGB1 release from macrophages and its downstream H2S/Cav3.2 signaling in mice. Cells 9, 1748 (2020).
pmcid: 7463894 doi: 10.3390/cells9081748
Wang, C. M., Jiang, M. & Wang, H. J. Effect of NFkappaB inhibitor on highmobility group protein B1 expression in a COPD rat model. Mol. Med Rep. 7, 499–502 (2013).
pubmed: 23151670 doi: 10.3892/mmr.2012.1181
Nowell, C. S. & Radtke, F. Notch as a tumour suppressor. Nat. Rev. Cancer 17, 145–159 (2017).
pubmed: 28154375 doi: 10.1038/nrc.2016.145
Garis, M. & Garrett-Sinha, L. A. Notch signaling in B cell immune responses. Front. Immunol. 11, 609324 (2020).
pubmed: 33613531 doi: 10.3389/fimmu.2020.609324
Castro, R. C., Goncales, R. A., Zambuzi, F. A. & Frantz, F. G. Notch signaling pathway in infectious diseases: role in the regulation of immune response. Inflamm. Res. 70, 261–274 (2021).
pubmed: 33558976 doi: 10.1007/s00011-021-01442-5
Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 14, 290–298 (2008).
pubmed: 18311147 doi: 10.1038/nm1731
Okamoto, M. et al. Essential role of Notch signaling in effector memory CD8+ T cell-mediated airway hyperresponsiveness and inflammation. J. Exp. Med 205, 1087–1097 (2008).
pubmed: 18426985 pmcid: 2373841 doi: 10.1084/jem.20072200
Tsao, P. N. et al. Lipopolysaccharide-induced Notch signaling activation through JNK-dependent pathway regulates inflammatory response. J. Biomed. Sci. 18, 56 (2011).
pubmed: 21843347 pmcid: 3176188 doi: 10.1186/1423-0127-18-56
Zhou, J. R. et al. Neuropeptide Y induces secretion of high-mobility group box 1 protein in mouse macrophage via PKC/ERK dependent pathway. J. Neuroimmunol. 260, 55–59 (2013).
pubmed: 23623189 doi: 10.1016/j.jneuroim.2013.04.005
Huang, W. et al. Heat stress induces RIP1/RIP3-dependent necroptosis through the MAPK, NF-kappaB, and c-Jun signaling pathways in pulmonary vascular endothelial cells. Biochem. Biophys. Res. Commun. 528, 206–212 (2020).
pubmed: 32471717 doi: 10.1016/j.bbrc.2020.04.150
Kim, H. S. et al. Sulfatide inhibits HMGB1 secretion by hindering toll-like receptor 4 localization within lipid rafts. Front. Immunol. 11, 1305 (2020).
pubmed: 32655573 pmcid: 7324676 doi: 10.3389/fimmu.2020.01305
Nishioku, T. et al. Dimethyl fumarate prevents osteoclastogenesis by decreasing NFATc1 expression, inhibiting of erk and p38 MAPK phosphorylation, and suppressing of HMGB1 release. Biochem. Biophys. Res. Commun. 530, 455–461 (2020).
pubmed: 32553625 doi: 10.1016/j.bbrc.2020.05.088
Mohanty, S. K. et al. High mobility group box 1 release by cholangiocytes governs biliary atresia pathogenesis and correlates with increases in afflicted infants. Hepatology 74, 864–878 (2021).
pubmed: 33559243 doi: 10.1002/hep.31745
Ma, Y. et al. NRP1 regulates HMGB1 in vascular endothelial cells under high homocysteine condition. Am. J. Physiol. Heart Circ. Physiol. 316, H1039–H1046 (2019).
pubmed: 30767669 doi: 10.1152/ajpheart.00746.2018
Darnell, J. E. J. The JAK-STAT pathway summary of initial studies and recent advances. Recent Prog. Horm. Res. 51, 391–403 (1996).
pubmed: 8701087
Ou, A., Ott, M., Fang, D. & Heimberger, A. B. The role and therapeutic targeting of JAK/STAT signaling in glioblastoma. Cancers 13, 437 (2021).
pubmed: 33498872 pmcid: 7865703 doi: 10.3390/cancers13030437
Murray, P. J. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629 (2007).
pubmed: 17312100 doi: 10.4049/jimmunol.178.5.2623
Zhou, S. et al. Angiotensin II enhances the acetylation and release of HMGB1 in RAW264.7 macrophage. Cell Biol. Int. 42, 1160–1169 (2018).
pubmed: 29741224 doi: 10.1002/cbin.10984
Hao, J. et al. IFN-gamma induces lipogenesis in mouse mesangial cells via the JAK2/STAT1 pathway. Am. J. Physiol. Cell Physiol. 304, C760–C767 (2013).
pubmed: 23407880 doi: 10.1152/ajpcell.00352.2012
Park, E. J., Kim, Y. M., Kim, H. J. & Chang, K. C. Degradation of histone deacetylase 4 via the TLR4/JAK/STAT1 signaling pathway promotes the acetylation of high mobility group box 1 (HMGB1) in lipopolysaccharide-activated macrophages. FEBS Open Bio. 8, 1119–1126 (2018).
pubmed: 29988587 pmcid: 6026695 doi: 10.1002/2211-5463.12456
Imbaby, S. et al. Beneficial effect of STAT3 decoy oligodeoxynucleotide transfection on organ injury and mortality in mice with cecal ligation and puncture-induced sepsis. Sci. Rep. 10, 15316 (2020).
pubmed: 32943679 pmcid: 7498613 doi: 10.1038/s41598-020-72136-x
Wu, Y. et al. Study on the mechanism of JAK2/STAT3 signaling pathway-mediated inflammatory reaction after cerebral ischemia. Mol. Med. Rep. 17, 5007–5012 (2018).
pubmed: 29393445 pmcid: 5865961
Wang, G., Zhang, J., Dui, D., Ren, H. & Liu, J. High mobility group box 1 induces the activation of the Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in pancreatic acinar cells in rats, while AG490 and rapamycin inhibit their activation. Bosn. J. Basic Med. Sci. 16, 307–312 (2016).
pubmed: 27754827 pmcid: 5136768
Guo, H. F. et al. High mobility group box 1 induces synoviocyte proliferation in rheumatoid arthritis by activating the signal transducer and activator transcription signal pathway. Clin. Exp. Med. 11, 65–74 (2011).
pubmed: 21069420 doi: 10.1007/s10238-010-0116-3
Conti, L. et al. The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J. 27, 4731–4744 (2013).
pubmed: 23970797 doi: 10.1096/fj.13-230201
Zhang, B., Yang, N., Mo, Z. M., Lin, S. P. & Zhang, F. IL-17A enhances microglial response to OGD by regulating p53 and PI3K/Akt pathways with involvement of ROS/HMGB1. Front. Mol. Neurosci. 10, 271 (2017).
pubmed: 28912678 pmcid: 5583146 doi: 10.3389/fnmol.2017.00271
Zhang, X. et al. Silencing of functional p53 attenuates NAFLD by promoting HMGB1-related autophagy induction. Hepatol. Int. 14, 828–841 (2020).
pubmed: 32607732 doi: 10.1007/s12072-020-10068-4
Livesey, K. et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72, 1996–2005 (2012).
pubmed: 22345153 pmcid: 3417120 doi: 10.1158/0008-5472.CAN-11-2291
Davalos, A. R. et al. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 201, 613–629 (2013).
pubmed: 23649808 pmcid: 3653366 doi: 10.1083/jcb.201206006
Yan, H. X. et al. p53 promotes inflammation-associated hepatocarcinogenesis by inducing HMGB1 release. J. Hepatol. 59, 762–768 (2013).
pubmed: 23714159 pmcid: 3805120 doi: 10.1016/j.jhep.2013.05.029
Luo, P. et al. HMGB1 represses the anti-cancer activity of sunitinib by governing TP53 autophagic degradation via its nucleus-to-cytoplasm transport. Autophagy 14, 2155–2170 (2018).
pubmed: 30205729 pmcid: 6984767 doi: 10.1080/15548627.2018.1501134
Shao, X. R. et al. Peroxisome proliferator-activated receptor-γ: master regulator of adipogenesis and obesity. Curr. Stem. Cell Res. Ther. 11, 282–289 (2016).
pubmed: 26018229 doi: 10.2174/1574888X10666150528144905
Hernandez-Quiles, M., Broekema, M. F. & Kalkhoven, E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Front. Endocrinol. 12, 624112 (2021).
doi: 10.3389/fendo.2021.624112
Hwang, J. S. et al. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone inhibits lipopolysaccharide-induced release of high mobility group box 1. Mediators Inflamm. 2012, 352807 (2012).
pubmed: 23316104 pmcid: 3539392 doi: 10.1155/2012/352807
Ying, S., Xiao, X., Chen, T. & Lou, J. PPAR ligands function as suppressors that target biological actions of HMGB1. PPAR Res. 2016, 2612743 (2016).
pubmed: 27563308 pmcid: 4985574 doi: 10.1155/2016/2612743
Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).
pubmed: 23702978 doi: 10.1038/nri3452
Craven, R. R. et al. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS ONE 4, e7446 (2009).
pubmed: 19826485 pmcid: 2758589 doi: 10.1371/journal.pone.0007446
Lamkanfi, M. et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J. Immunol. 185, 4385–4392 (2010).
pubmed: 20802146 doi: 10.4049/jimmunol.1000803
Barlan, A. U., Griffin, T. M., McGuire, K. A. & Wiethoff, C. M. Adenovirus membrane penetration activates the NLRP3 inflammasome. J. Virol. 85, 146–155 (2011).
pubmed: 20980503 doi: 10.1128/JVI.01265-10
Miller, J. M. et al. Curcumin: a double hit on malignant mesothelioma. Cancer Prev. Res. 7, 330–340 (2014).
doi: 10.1158/1940-6207.CAPR-13-0259
Lu, B. et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488, 670–674 (2012).
pubmed: 22801494 pmcid: 4163918 doi: 10.1038/nature11290
Yu, S. et al. The complement receptor C5aR2 promotes protein kinase R expression and contributes to NLRP3 inflammasome activation and HMGB1 release from macrophages. J. Biol. Chem. 294, 8384–8394 (2019).
pubmed: 30971430 pmcid: 6544858 doi: 10.1074/jbc.RA118.006508
Xie, M. et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 7, 13280 (2016).
pubmed: 27779186 pmcid: 5093342 doi: 10.1038/ncomms13280
Xiang, M. et al. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J. Immunol. 187, 4809–4817 (2011).
pubmed: 21940680 doi: 10.4049/jimmunol.1102093
Zhu, P. et al. Gene silencing of NALP3 protects against liver ischemia-reperfusion injury in mice. Hum. Gene Ther. 22, 853–864 (2011).
pubmed: 21128730 doi: 10.1089/hum.2010.145
Kamo, N. et al. ASC/caspase-1/IL-1beta signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatology 58, 351–362 (2013).
pubmed: 23408710 doi: 10.1002/hep.26320
Khambu, B. et al. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J. Clin. Invest. 128, 2419–2435 (2018).
pubmed: 29558368 pmcid: 5983330 doi: 10.1172/JCI91814
Willingham, S. B. et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J. Immunol. 183, 2008–2015 (2009).
pubmed: 19587006 doi: 10.4049/jimmunol.0900138
Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nat. Rev. Mol. Cell Biol. 3, 122–131 (2002).
pubmed: 11836514 doi: 10.1038/nrm732
Gardella, S. et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. Embo. Rep. 3, 995–1001 (2002).
pubmed: 12231511 pmcid: 1307617 doi: 10.1093/embo-reports/kvf198
Rausch, M. P. & Hastings, K. T. GILT modulates CD4+ T-cell tolerance to the melanocyte differentiation antigen tyrosinase-related protein 1. J. Invest. Dermatol. 132, 154–162 (2012).
pubmed: 21833020 doi: 10.1038/jid.2011.236
Lackman, R. L. & Cresswell, P. Exposure of the promonocytic cell line THP-1 to Escherichia coli induces IFN-gamma-inducible lysosomal thiol reductase expression by inflammatory cytokines. J. Immunol. 177, 4833–4840 (2006).
pubmed: 16982925 doi: 10.4049/jimmunol.177.7.4833
Lackman, R. L., Jamieson, A. M., Griffith, J. M., Geuze, H. & Cresswell, P. Innate immune recognition triggers secretion of lysosomal enzymes by macrophages. Traffic 8, 1179–1189 (2007).
pubmed: 17555533 doi: 10.1111/j.1600-0854.2007.00600.x
Chiang, H. S. & Maric, M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic. Biol. Med. 51, 688–699 (2011).
pubmed: 21640818 doi: 10.1016/j.freeradbiomed.2011.05.015
Semino, C., Angelini, G., Poggi, A. & Rubartelli, A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106, 609–616 (2005).
pubmed: 15802534 doi: 10.1182/blood-2004-10-3906
Stark, K. et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 128, 2435–2449 (2016).
pubmed: 27574188 pmcid: 5147023 doi: 10.1182/blood-2016-04-710632
Maugeri, N. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 12, 2074–2088 (2014).
pubmed: 25163512 doi: 10.1111/jth.12710
Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Invest. 125, 4638–4654 (2015).
pubmed: 26551681 pmcid: 4665785 doi: 10.1172/JCI81660
Qin, S. et al. Role of HMGB1 in apoptosis-mediated sepsis lethality. J. Exp. Med. 203, 1637–1642 (2006).
pubmed: 16818669 pmcid: 2118346 doi: 10.1084/jem.20052203
Velegraki, M. et al. Impaired clearance of apoptotic cells leads to HMGB1 release in the bone marrow of patients with myelodysplastic syndromes and induces TLR4-mediated cytokine production. Haematologica 98, 1206–1215 (2013).
pubmed: 23403315 pmcid: 3729900 doi: 10.3324/haematol.2012.064642
Jiang, G. et al. HMGB1 release triggered by the interaction of live retinal cells and uveitogenic T cells is Fas/FasL activation-dependent. J. Neuroinflammation 12, 179 (2015).
pubmed: 26394985 pmcid: 4579830 doi: 10.1186/s12974-015-0389-2
Beom, J. H. et al. Targeted temperature management at 33 degrees C or 36 induces equivalent myocardial protection by inhibiting HMGB1 release in myocardial ischemia/reperfusion injury. PLoS ONE 16, e0246066 (2021).
pubmed: 33503060 pmcid: 7840046 doi: 10.1371/journal.pone.0246066
Wang, Z. K. et al. Electroacupuncture pretreatment attenuates acute lung injury through α7 nicotinic acetylcholine receptor-mediated inhibition of HMGB1 release in rats after cardiopulmonary bypass. Shock 50, 351–359 (2018).
pubmed: 29117064 pmcid: 6072368 doi: 10.1097/SHK.0000000000001050
Hisaoka-Nakashima, K. et al. Corticosterone induces HMGB1 release in primary cultured rat cortical astrocytes: involvement of pannexin-1 and P2X7 receptor-dependent mechanisms. Cells 9, 1068 (2020).
pmcid: 7290518 doi: 10.3390/cells9051068
Lai, P. F. et al. ATF3 Protects against LPS-induced inflammation in mice via inhibiting HMGB1 expression. Evid. Based Complement. Altern. Med. 2013, 716481 (2013).
doi: 10.1155/2013/716481
Kawakami, M. et al. The role of CCR7 in allergic airway inflammation induced by house dust mite exposure. Cell. Immunol. 275, 24–32 (2012).
pubmed: 22521241 doi: 10.1016/j.cellimm.2012.03.009
Ogiku, M., Kono, H., Hara, M., Tsuchiya, M. & Fujii, H. Glycyrrhizin prevents liver injury by inhibition of high-mobility group box 1 production by Kupffer cells after ischemia-reperfusion in rats. J. Pharmacol. Exp. Ther. 339, 93–98 (2011).
pubmed: 21737537 doi: 10.1124/jpet.111.182592
Nakamura, A. et al. Increased susceptibility to LPS-induced endotoxin shock in secretory leukoprotease inhibitor (SLPI)-deficient mice. J. Exp. Med 197, 669–674 (2003).
pubmed: 12615907 pmcid: 2193830 doi: 10.1084/jem.20021824
Cai, C. et al. Complement factor 3 deficiency attenuates hemorrhagic shock-related hepatic injury and systemic inflammatory response syndrome. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1175–R1182 (2010).
pubmed: 20702808 pmcid: 2980448 doi: 10.1152/ajpregu.00282.2010
Fujioka, M. et al. ADAMTS13 gene deletion enhances plasma high-mobility group box1 elevation and neuroinflammation in brain ischemia-reperfusion injury. Neurol. Sci. 33, 1107–1115 (2012).
pubmed: 22212812 doi: 10.1007/s10072-011-0913-9
Noguchi, T. et al. Gefitinib initiates sterile inflammation by promoting IL-1beta and HMGB1 release via two distinct mechanisms. Cell Death Dis. 12, 49 (2021).
pubmed: 33414419 pmcid: 7791030 doi: 10.1038/s41419-020-03335-7
Nguewa, P. A., Fuertes, M. A., Valladares, B., Alonso, C. & Perez, J. M. Poly(ADP-ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications. Prog. Biophys. Mol. Biol. 88, 143–172 (2005).
pubmed: 15561303 doi: 10.1016/j.pbiomolbio.2004.01.001
Woodhouse, B. C. & Dianov, G. L. Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair (Amst.) 7, 1077–1086 (2008).
doi: 10.1016/j.dnarep.2008.03.009
Pandey, N. & Black, B. E. Rapid detection and signaling of DNA damage by PARP-1. Trends Biochem. Sci. 46, 744–757 (2021).
pubmed: 33674152 doi: 10.1016/j.tibs.2021.01.014
Ni, S. Y. et al. Puerarin alleviates lipopolysaccharide-induced myocardial fibrosis by inhibiting PARP-1 to prevent HMGB1-mediated TLR4-NF-kappaB signaling pathway. Cardiovasc. Toxicol. 20, 482–491 (2020).
pubmed: 32236896 doi: 10.1007/s12012-020-09571-9
Jagtap, P. & Szabo, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Disco. 4, 421–440 (2005).
doi: 10.1038/nrd1718
Qin, W. D. et al. Low shear stress induced HMGB1 translocation and release via PECAM-1/PARP-1 pathway to induce inflammation response. PLoS ONE 10, e0120586 (2015).
pubmed: 25793984 pmcid: 4368774 doi: 10.1371/journal.pone.0120586
Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).
pubmed: 19524513 pmcid: 2727676 doi: 10.1016/j.cell.2009.05.037
He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009).
pubmed: 19524512 doi: 10.1016/j.cell.2009.05.021
Thapa, R. J. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl Acad. Sci. USA 110, E3109–E3118 (2013).
pubmed: 23898178 pmcid: 3746924 doi: 10.1073/pnas.1301218110
Yuan, J., Amin, P. & Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20, 19–33 (2019).
pubmed: 30467385 pmcid: 6342007 doi: 10.1038/s41583-018-0093-1
Murakami, Y. et al. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ. 21, 270–277 (2014).
pubmed: 23954861 doi: 10.1038/cdd.2013.109
Liu, Y. et al. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death Dis. 12, 62 (2021).
pubmed: 33431831 pmcid: 7801412 doi: 10.1038/s41419-020-03365-1
Allocca, M., Corrigan, J. J., Mazumder, A., Fake, K. R. & Samson, L. D. Inflammation, necrosis, and the kinase RIP3 are key mediators of AAG-dependent alkylation-induced retinal degeneration. Sci. Signal 12, eaau9216 (2019).
pubmed: 30755477 pmcid: 7150588 doi: 10.1126/scisignal.aau9216
Aits, S. & Jaattela, M. Lysosomal cell death at a glance. J. Cell Sci. 126, 1905–1912 (2013).
pubmed: 23720375 doi: 10.1242/jcs.091181
Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019).
pubmed: 30948788 pmcid: 6796845 doi: 10.1038/s41422-019-0164-5
Morinaga, Y. et al. Legionella pneumophila induces cathepsin B-dependent necrotic cell death with releasing high mobility group box1 in macrophages. Respir. Res. 11, 158 (2010).
pubmed: 21092200 pmcid: 3003236 doi: 10.1186/1465-9921-11-158
Zhang, Y., Chen, Y., Zhang, Y., Li, P. L. & Li, X. Contribution of cathepsin B-dependent Nlrp3 inflammasome activation to nicotine-induced endothelial barrier dysfunction. Eur. J. Pharmacol. 865, 172795 (2019).
pubmed: 31733211 pmcid: 6925381 doi: 10.1016/j.ejphar.2019.172795
Hamalisto, S. et al. Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation. Nat. Commun. 11, 229 (2020).
pubmed: 31932607 pmcid: 6957743 doi: 10.1038/s41467-019-14009-0
Chen, L. et al. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis. 9, 597 (2018).
pubmed: 29789550 pmcid: 5964241 doi: 10.1038/s41419-018-0538-5
Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q. & Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122, 877–902 (2018).
pubmed: 29700084 pmcid: 5926825 doi: 10.1161/CIRCRESAHA.117.311401
Chen, X., Kang, R., Kroemer, G. & Tang, D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 18, 280–296 (2021).
pubmed: 33514910 doi: 10.1038/s41571-020-00462-0
Brambilla, L., Martorana, F., Guidotti, G. & Rossi, D. Dysregulation of astrocytic HMGB1 signaling in amyotrophic lateral sclerosis. Front. Neurosci. 12, 622 (2018).
pubmed: 30210286 pmcid: 6123379 doi: 10.3389/fnins.2018.00622
Yon, J. M., Kim, Y. B. & Park, D. The ethanol fraction of white rose petal extract abrogates excitotoxicity-induced neuronal damage in vivo and in vitro through inhibition of oxidative stress and proinflammation. Nutrients 10, 1375 (2018).
pmcid: 6213719 doi: 10.3390/nu10101375
Lo Coco, D., Veglianese, P., Allievi, E. & Bendotti, C. Distribution and cellular localization of high mobility group box protein 1 (HMGB1) in the spinal cord of a transgenic mouse model of ALS. Neurosci. Lett. 412, 73–77 (2007).
pubmed: 17196331 doi: 10.1016/j.neulet.2006.10.063
Kang, R., Livesey, K. M., Zeh, H. J. 3rd, Lotze, M. T. & Tang, D. HMGB1 as an autophagy sensor in oxidative stress. Autophagy 7, 904–906 (2011).
pubmed: 21487246 doi: 10.4161/auto.7.8.15704
Tang, D., Kang, R., Livesey, K. M., Zeh, H. J. 3rd & Lotze, M. T. High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress. Antioxid. Redox Signal 15, 2185–2195 (2011).
pubmed: 21395369 pmcid: 3166205 doi: 10.1089/ars.2010.3666
Shichita, T. et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 18, 911–917 (2012).
pubmed: 22610280 doi: 10.1038/nm.2749
Vezzoli, M. et al. High-mobility group box 1 release and redox regulation accompany regeneration and remodeling of skeletal muscle. Antioxid. Redox Signal 15, 2161–2174 (2011).
pubmed: 21294652 doi: 10.1089/ars.2010.3341
Nagata, S., Nagase, H., Kawane, K., Mukae, N. & Fukuyama, H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ. 10, 108–116 (2003).
pubmed: 12655299 doi: 10.1038/sj.cdd.4401161
Kim, S. W. & Lee, J. K. Role of HMGB1 in the interplay between NETosis and thrombosis in ischemic stroke: a review. Cells 9, 1794 (2020).
pmcid: 7464684 doi: 10.3390/cells9081794
Tohme, S. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 76, 1367–1380 (2016).
pubmed: 26759232 pmcid: 4794393 doi: 10.1158/0008-5472.CAN-15-1591
Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).
pubmed: 21389264 pmcid: 3143837 doi: 10.1126/scitranslmed.3001201
Huang, H. et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62, 600–614 (2015).
pubmed: 25855125 doi: 10.1002/hep.27841
Yamada, Y. et al. DR396, an apoptotic DNase gamma inhibitor, attenuates high mobility group box 1 release from apoptotic cells. Bioorg. Med. Chem. 19, 168–171 (2011).
pubmed: 21167721 doi: 10.1016/j.bmc.2010.11.037
Yamada, Y. et al. The release of high mobility group box 1 in apoptosis is triggered by nucleosomal DNA fragmentation. Arch. Biochem. Biophys. 506, 188–193 (2011).
pubmed: 21093407 doi: 10.1016/j.abb.2010.11.011
Keller, N. et al. Group A streptococcal DNase Sda1 impairs plasmacytoid dendritic cells’ type 1 interferon response. J. Invest. Dermatol. 139, 1284–1293 (2019).
pubmed: 30543898 doi: 10.1016/j.jid.2018.11.027
Liu, B. et al. Inflammatory caspases drive pyroptosis in acute lung injury. Front. Pharmacol. 12, 631256 (2021).
pubmed: 33613295 pmcid: 7892432 doi: 10.3389/fphar.2021.631256
Kopeina, G. S., Prokhorova, E. A., Lavrik, I. N. & Zhivotovsky, B. Alterations in the nucleocytoplasmic transport in apoptosis: caspases lead the way. Cell Prolif. 51, e12467 (2018).
pubmed: 29947118 pmcid: 6528946 doi: 10.1111/cpr.12467
Mandal, R., Barron, J. C., Kostova, I., Becker, S. & Strebhardt, K. Caspase-8: the double-edged sword. Biochim Biophys. Acta Rev. Cancer 1873, 188357 (2020).
pubmed: 32147543 doi: 10.1016/j.bbcan.2020.188357
Zhao, Q. et al. Fenofibrate protects against acute myocardial I/R injury in rat by suppressing mitochondrial apoptosis as decreasing cleaved caspase-9 activation. Cancer Biomark. 19, 455–463 (2017).
pubmed: 28582851 doi: 10.3233/CBM-170572
Makazan, Z., Saini, H. K. & Dhalla, N. S. Role of oxidative stress in alterations of mitochondrial function in ischemic-reperfused hearts. Am. J. Physiol. Heart Circ. Physiol. 292, H1986–H1994 (2007).
pubmed: 17172267 doi: 10.1152/ajpheart.01214.2006
Briard, B., Malireddi, R. K. S. & Kanneganti, T. D. Role of inflammasomes/pyroptosis and PANoptosis during fungal infection. PLoS Pathog. 17, e1009358 (2021).
pubmed: 33735255 pmcid: 7971547 doi: 10.1371/journal.ppat.1009358
LeBlanc, P. M. et al. An immunogenic peptide in the A-box of HMGB1 protein reverses apoptosis-induced tolerance through RAGE receptor. J. Biol. Chem. 289, 7777–7786 (2014).
pubmed: 24474694 pmcid: 3953289 doi: 10.1074/jbc.M113.541474
New, J. & Thomas, S. M. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy 15, 1682–1693 (2019).
pubmed: 30894055 pmcid: 6735501 doi: 10.1080/15548627.2019.1596479
Kim, Y. H. et al. Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy 17, 2345–2362 (2021).
pubmed: 33017561 doi: 10.1080/15548627.2020.1826690
Wen, Q., Liu, J., Kang, R., Zhou, B. & Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 510, 278–283 (2019).
pubmed: 30686534 doi: 10.1016/j.bbrc.2019.01.090
Tang, D. et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190, 881–892 (2010).
pubmed: 20819940 pmcid: 2935581 doi: 10.1083/jcb.200911078
Kang, R., Livesey, K. M., Zeh, H. J. 3rd, Lotze, M. T. & Tang, D. Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy 7, 1256–1258 (2011).
pubmed: 21691146 doi: 10.4161/auto.7.10.16753
Liu, X. et al. Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells. Cell Death Dis. 9, 1048 (2018).
pubmed: 30323180 pmcid: 6189137 doi: 10.1038/s41419-018-1006-y
Xu, T., Jiang, L. & Wang, Z. The progression of HMGB1-induced autophagy in cancer biology. Onco Targets Ther. 12, 365–377 (2019).
pubmed: 30643434 doi: 10.2147/OTT.S185876
Chen, X., Yu, C., Kang, R., Kroemer, G. & Tang, D. Cellular degradation systems in ferroptosis. Cell Death Differ. 28, 1135–1148 (2021).
pubmed: 33462411 pmcid: 8027807 doi: 10.1038/s41418-020-00728-1
Liu, J. et al. Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem. Biol. 27, 420–435 (2020).
pubmed: 32160513 pmcid: 7166192 doi: 10.1016/j.chembiol.2020.02.005
Chen, X., Li, J., Kang, R., Klionsky, D. J. & Tang, D. Ferroptosis: machinery and regulation. Autophagy 17, 2054–2081 (2020).
pubmed: 32804006 pmcid: 8496712 doi: 10.1080/15548627.2020.1810918
Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).
pubmed: 27245739 pmcid: 4968231 doi: 10.1080/15548627.2016.1187366
Liu, J., Kuang, F., Kang, R. & Tang, D. Alkaliptosis: a new weapon for cancer therapy. Cancer Gene Ther. 27, 267–269 (2020).
pubmed: 31467365 doi: 10.1038/s41417-019-0134-6
Song, X. et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154, 1480–1493 (2018).
pubmed: 29248440 doi: 10.1053/j.gastro.2017.12.004
Zhu, S., Liu, J., Kang, R., Yang, M. & Tang, D. Targeting NF-kappaB-dependent alkaliptosis for the treatment of venetoclax-resistant acute myeloid leukemia cells. Biochem. Biophys. Res. Commun. 562, 55–61 (2021).
pubmed: 34034094 doi: 10.1016/j.bbrc.2021.05.049
Fang, X. et al. The HMGB1-AGER-STING1 pathway mediates the sterile inflammatory response to alkaliptosis. Biochem. Biophys. Res. Commun. 560, 165–171 (2021).
pubmed: 33992959 doi: 10.1016/j.bbrc.2021.05.003

Auteurs

Ruochan Chen (R)

Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. 84172332@qq.com.
Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. 84172332@qq.com.

Rui Kang (R)

Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.

Daolin Tang (D)

Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA. daolin.tang@utsouthwestern.edu.

Articles similaires

Animals Dogs Dog Diseases Autophagy Immunohistochemistry
STAT3 Transcription Factor Respiratory Syncytial Virus Infections Humans Animals Mice
Respiratory Syncytial Virus Infections Humans Animals Mice STAT3 Transcription Factor
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition

Classifications MeSH