Fentanyl-induced changes in brain activity in awake nonhuman primates at 9.4 Tesla.
Fentanyl
Nonhuman primate
Opioid
fMRI
Journal
Brain imaging and behavior
ISSN: 1931-7565
Titre abrégé: Brain Imaging Behav
Pays: United States
ID NLM: 101300405
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
accepted:
13
01
2022
pubmed:
1
3
2022
medline:
16
7
2022
entrez:
28
2
2022
Statut:
ppublish
Résumé
Functional magnetic resonance imaging (fMRI) has been used to study the influence of opioids on neural circuitry implicated in opioid use disorder, such as the cortico-striatal-thalamo-cortical (CSTC) circuit. Given the increase in fentanyl-related deaths, this study was conducted to characterize the effects of fentanyl on patterns of brain activation in awake nonhuman primates. Four squirrel monkeys were acclimated to awake scanning procedures conducted at 9.4 Tesla. Subsequently, test sessions were conducted in which a dose of fentanyl that reliably maintains intravenous (IV) self-administration behavior in monkeys, 1 μg/kg, was administered and the effects on patterns of brain activity were assessed using: (1) a pharmacological regressor to elucidate fentanyl-induced patterns of neural activity, and (2) seed-based approaches targeting bilateral anterior cingulate, thalamus, or nucleus accumbens (NAc) to determine alterations in CSTC functional connectivity. Results showed a functional inhibition of BOLD signal in brain regions that mediate behavioral effects of opioid agonists, such as cingulate cortex, striatum and midbrain. Functional connectivity between each of the seed regions and areas involved in motoric, sensory and cognition-related behavior generally decreased. In contrast, NAc functional connectivity with other striatal regions increased. These results indicate that fentanyl produces changes within CSTC circuitry that may reflect key features of opioid use disorder (e.g. persistent drug-taking/seeking) and thereby contribute to long-term disruptions in behavior and addiction. They also indicate that fMRI in alert nonhuman primates can detect drug-induced changes in neural circuits and, in turn, may be useful for investigating the effectiveness of medications to reverse drug-induced dysregulation.
Identifiants
pubmed: 35226333
doi: 10.1007/s11682-022-00639-4
pii: 10.1007/s11682-022-00639-4
doi:
Substances chimiques
Fentanyl
UF599785JZ
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1684-1694Subventions
Organisme : NIDA NIH HHS
ID : T32DA015036
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA047575
Pays : United States
Organisme : NIDA NIH HHS
ID : K01DA039306
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA047130
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Alimohammadi, H., Baratloo, A., Abdalvand, A., Rouhipour, A., & Safari, S. (2014). Effects of pain relief on arterial blood o2 saturation. Trauma Monthly, 19(1), E14034.
pubmed: 24719825
pmcid: 3955924
doi: 10.5812/traumamon.14034
Alkire, M. T. (2008). Probing the mind: Anesthesia and neuroimaging. Clinical Pharmacology and Therapeutics, 84(1), 149–152.
pubmed: 18418369
doi: 10.1038/clpt.2008.75
Atlas, L. Y., Whittington, R. A., Lindquist, M. A., Wielgosz, J., Sonty, N., & Wager, T. D. (2012). Dissociable influences of opiates and expectations on pain. The Journal of Neuroscience, 32(23), 8053–8064.
pubmed: 22674280
pmcid: 3387557
doi: 10.1523/JNEUROSCI.0383-12.2012
Becerra, L., Harter, K., Gonzalez, R. G., & Borsook, D. (2006). Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitry in opioid-naive healthy volunteers. Anesthesia and Analgesia, 103(1), 208–216.
pubmed: 16790655
doi: 10.1213/01.ane.0000221457.71536.e0
Berke, J. D., & Human, S. E. (2000). Addiction, dopamine and the molecular mechanisms of memory. Neuron., 25(3), 515–532.
pubmed: 10774721
doi: 10.1016/S0896-6273(00)81056-9
Berke, J. D., Okatan, M., Skurski, J. & Eichenbaum, H. B. (2004). Oscillatory entrainment of striatal neurons in freely moving rats. Neuron (Cambridge, Mass.), 43(6), 883-896.
Connor, M. A., Vaughan, C. W., Ingram, S. L., & Christie, M. J. (1997). How opioids inhibit GABA-mediated neurotransmission. Nature (London), 390(6660), 611–614.
doi: 10.1038/37610
Dahan, A., Yassen, A., Bijl, H., Romberg, R., Sarton, E., Teppema, L., et al. (2005). Comparison of the respiratory effects of intravenous buprenorphine and fentanyl in humans and rats. British Journal of Anaesthesia, 94(6), 825–834.
pubmed: 15833777
doi: 10.1093/bja/aei145
de Wit, H. (2009). Impulsivity as a determinant and consequence of drug use: A review of underlying processes. Addiction Biology, 14(1), 22–31 https://doi.org/10.1111/j.1369-1600.2008.00129.x
pubmed: 18855805
doi: 10.1111/j.1369-1600.2008.00129.x
Emmers, R., & Akert, K. (1963). A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus). Univ. of Wisconsin Press.
Ersche, K. D., Barnes, A., Jones, P. S., Morein-Zamir, S., Robbins, T. W., & Bullmore, E. T. (2011). Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain, 134(Pt 7), 2013–2024.
pubmed: 21690575
pmcid: 3122375
doi: 10.1093/brain/awr138
Esteban, O., Birman, D. S., Marie, K., Oluwasanmi, O., Poldrack, R. A., & Gorgolewski, K. J. (2017). MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS One, 12(9), E0184661.
pubmed: 28945803
pmcid: 5612458
doi: 10.1371/journal.pone.0184661
Ezeomah, C., Cunningham, K. A., Stutz, S. J., Fox, R. G., Bukreyeva, N., Dineley, K. T., et al. (2020). Fentanyl self-administration impacts brain immune responses in male Sprague-Dawley rats. Brain, Behavior, and Immunity, 87, 725–738.
pubmed: 32165150
doi: 10.1016/j.bbi.2020.03.003
Fox, M. D., Halko, M. A., Eldaief, M. C., & Pascual-Leone, A. (2012). Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage (Orlando, Fla.), 62(4), 2232–2243.
Gao, Y., Schilling, K. G., Khare, S. P., Panda, S., Choe, A. S., Stepniewska, I. et al. (2014). A brain MRI atlas of the common squirrel monkey, Saimiri sciureus. Proceedings of SPIE, the International Society for Optical Engineering 9038: 90380C-90380C-9.
Gergen, J. A., & Maclean, P. D. (1962). A stereotaxic atlas of the squirrel monkey’s brain (Saimiri sciureus)
Goldberg, S. R. (1973). Comparable behavior maintained under fixed-ratio and second-order schedules of food presentation, cocaine injection or d-amphetamine injection in the squirrel monkey. The Journal of Pharmacology and Experimental Therapeutics, 186(1), 18–30.
pubmed: 4198773
Gorka, S. M., Fitzgerald, D. A., De Wit, H., Angstadt, M., & Phan, K. L. (2014). Opioid modulation of resting-state anterior cingulate cortex functional connectivity. Journal of Psychopharmacology (Oxford), 28(12), 1115–1124.
doi: 10.1177/0269881114548436
Gradin, V. B., Baldacchino, A., Balfour, D., Mattews, K., & Steele, J. D. (2014). Abnormal brain activity during a reward and loss task in opiate-dependent patients receiving methadone maintenance therapy. Neuropsychopharmacology (New York, N.Y.), 39(4), 885–894.
Hill, R. S., Dewey, W., Kelly, E., & Henderson, G. (2020). Fentanyl depression of respiration: Comparison with heroin and morphine. British Journal of Pharmacology, 177(2), 254–266. https://doi.org/10.1111/bph.14860 .
doi: 10.1111/bph.14860
pubmed: 31499594
Huang, A. S., Mitchell, J. A., Haber, S. N., Alia-Klein, N., & Goldstein, R. Z. (2018). The thalamus in drug addiction: From rodents to humans. Philosophical transactions. Biological Sciences, 373(1742), 20170028.
pubmed: 29352027
pmcid: 5790826
doi: 10.1098/rstb.2017.0028
Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29(1), 565–598.
pubmed: 16776597
doi: 10.1146/annurev.neuro.29.051605.113009
Janczewski, W. A., & Feldman, J. L. (2006). Novel data supporting the two respiratory rhythm oscillator hypothesis. Focus on "respiration-related rhythmic activity in the rostral medulla of newborn rats". Journal of Neurophysiology, 96(1), 1–2.
pubmed: 16554514
doi: 10.1152/jn.00246.2006
Kaufman, M. J., Janes, A. C., Frederick, B. B., Brimson-Théberge, M., Tong, Y., McWilliams, S. B., et al. (2013). A method for conducting functional MRI studies in alert nonhuman primates: Initial results with opioid agonists in male cynomolgus monkeys. Experimental and Clinical Psychopharmacology, 21(4), 323–331.
pubmed: 23773004
pmcid: 3916219
doi: 10.1037/a0033062
Ko, M. C., Terner, J., Hursh, S., Woods, J. H., & Winger, G. (2002). Relative reinforcing effects of three opioids with different durations of action. The Journal of Pharmacology and Experimental Therapeutics, 301(2), 698–704.
pubmed: 11961075
doi: 10.1124/jpet.301.2.698
Koob, G. F., & Le Moal, M. (1997). Drug abuse: Hedonic homeostatic dysregulation. Science (American Association for the Advancement of Science), 278(5335), 52–58.
doi: 10.1126/science.278.5335.52
Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology (New York, N.Y.), 35(4), 1051.
Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: A neurocircuitry analysis. The Lancet, Psychiatry, 3(8), 760–773.
pubmed: 27475769
doi: 10.1016/S2215-0366(16)00104-8
Kuhar, J. R., Bedini, A., Melief, E. J., Chiu, Y., Striegel, H. N., & Chavkin, C. (2015). Mu opioid receptor stimulation activates c-Jun N-terminal kinase 2 by distinct arrestin-dependent and independent mechanisms. Cellular Signalling, 27(9), 1799–1806.
pubmed: 26056051
pmcid: 4492890
doi: 10.1016/j.cellsig.2015.05.019
Kühn, S., & Gallinat, J. (2011). Common biology of craving across legal and illegal drugs - a quantitative meta-analysis of cue-reactivity brain response. The European Journal of Neuroscience, 33(7), 1318–1326.
pubmed: 21261758
doi: 10.1111/j.1460-9568.2010.07590.x
Kuo, A., Wyse, B. D., Meutermans, W., & Smith, M. T. (2015). In vivo profiling of seven common opioids for antinociception, constipation and respiratory depression: No two opioids have the same profile. British Journal of Pharmacology, 172(2), 532–548.
pubmed: 24641546
doi: 10.1111/bph.12696
Lanciego, J. L., Luquin, N., & Obeso, J. A. (2012). Functional neuroanatomy of the basal ganglia. Cold Spring Harbor Perspectives in Medicine, 2(12), A009621.
pubmed: 23071379
pmcid: 3543080
doi: 10.1101/cshperspect.a009621
Langleben, D. D., Ruparel, K., Elman, I., Loughead, J. W., Busch, E. L., Cornish, J., et al. (2014). Extended-release naltrexone modulates brain response to drug cues in abstinent heroin-dependent patients. Addiction Biology, 19(2), 262–271.
pubmed: 22747521
doi: 10.1111/j.1369-1600.2012.00462.x
Liu, J. V., Hirano, Y., Nascimento, G. C., Stefanovic, B., Leopold, D. A., & Silva, A. C. (2013). FMRI in the awake marmoset: Somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia. NeuroImage (Orlando, Fla.), 78, 186–195.
Maguma, H. T., Dewey, W. L., & Akbarali, H. I. (2012). Differences in the characteristics of tolerance to μ-opioid receptor agonists in the colon from wild type and β-arrestin2 knockout mice. European Journal of Pharmacology, 685(1–3), 133–140.
pubmed: 22521552
pmcid: 3358422
doi: 10.1016/j.ejphar.2012.04.001
Mandeville, J. B., Liu, C. H., Vanduffel, W., Marota, J. J., & Jenkins, B. G. (2014). Data collection and analysis strategies for phMRI. Neuropharmacology, 84, 65–78.
pubmed: 24613447
doi: 10.1016/j.neuropharm.2014.02.018
Martuzzi, R., Ramani, R., Qiu, M., Rajeevan, N., & Constable, R. T. (2010). Functional connectivity and alterations in baseline brain state in humans. NeuroImage (Orlando, Fla.), 49(1), 823–834.
Mather, L. (1983). Clinical pharmacokinetics of fentanyl and its newer derivatives. Clinical Pharmacokinetics, 8(5), 422–446.
pubmed: 6226471
doi: 10.2165/00003088-198308050-00004
Mattson, C. L., Tanz, L. J., Quinn, K., Kariisa, M., Patel, P., & Davis, N. L. (2021). Trends and geographic patterns in drug and synthetic opioid overdose deaths – United States, 2013-2019. MMWR. Morbidity and Mortality Weekly Report, 70, 202–207.
pubmed: 33571180
pmcid: 7877587
doi: 10.15585/mmwr.mm7006a4
Melief, E. J., Miyatake, M., Bruchas, M. R., & Chavkin, C. (2010). Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling. Proceedings of the National Academy of Sciences – PNAS, 107(25), 11608–11613.
doi: 10.1073/pnas.1000751107
Mercadante, S., Villari, P., Ferrera, P., Casuccio, A., & Gambaro, V. (2007). Opioid plasma concentrations during a switch from transdermal fentanyl to methadone. Journal of Palliative Medicine, 10(2), 338–344.
pubmed: 17472504
doi: 10.1089/jpm.2006.0140
Mhuircheartaigh, R., Rosenorn-Lanng, D., Wise, R., Jbabdi, S., Rogers, R., & Tracey, I. (2010). Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: A functional magnetic resonance imaging study using propofol. The Journal of Neuroscience, 30(27), 9095–9102.
pubmed: 20610743
pmcid: 6632477
doi: 10.1523/JNEUROSCI.5516-09.2010
Moningka, H., Lichenstein, S., Worhunsky, P. D., DeVito, E. E., Scheinost, D., & Yip, S. W. (2019). Can neuroimaging help combat the opioid epidemic? A systematic review of clinical and pharmacological challenge fMRI studies with recommendations for future research. Neuropsychopharmacology (New York, N.Y.), 44(2), 259–273.
Montandon, G., Qin, W., Liu, H., Ren, J., Greer, J. J., & Horner, R. L. (2011). PreBotzinger complex neurokinin-1 receptor-expressing neurons mediate opioid-induced respiratory depression. The Journal of Neuroscience, 31(4), 1292–1301.
pubmed: 21273414
pmcid: 6623620
doi: 10.1523/JNEUROSCI.4611-10.2011
Moreno-López, L., Stamatakis, E. A., Fernández-Serrano, M., Gómez-Río, M., Rodríguez-Fernández, A., Pérez-García, M., & Verdejo-García, A. (2012). Neural correlates of the severity of cocaine, heroin, alcohol, MDMA and cannabis use in polysubstance abusers: A resting-PET brain metabolism study. PLoS One, 7(6), E39830.
pubmed: 22768136
pmcid: 3387209
doi: 10.1371/journal.pone.0039830
Murnane, K. S., & Howell, L. L. (2010). Development of an apparatus and methodology for conducting functional magnetic resonance imaging (fMRI) with pharmacological stimuli in conscious rhesus monkeys. Journal of Neuroscience Methods, 191(1), 11–20.
pubmed: 20566353
pmcid: 2915932
doi: 10.1016/j.jneumeth.2010.06.001
Naqvi, N. H., & Bechara, A. (2008). The hidden island of addiction: The insula. Trends in Neurosciences (Regular Ed.), 32(1), 56–67.
doi: 10.1016/j.tins.2008.09.009
Peltier, S. J., Kerssens, C., Hamann, S. B., Sebel, P. S., Byas-Smith, M., & Hu, X. (2005). Functional connectivity changes with concentration of sevoflurane anesthesia. Neuroreport, 16(3), 285–288.
pubmed: 15706237
doi: 10.1097/00001756-200502280-00017
Peper, J. S., Mandl, R. C. W., Braams, B. R., de Water, E., Heijboer, A. C., Koolschijn, P. C. M. P., et al. (2013). Delay discounting and frontostriatal fiber tracts: A combined DTI and MTR study on impulsive choices in healthy young adults. Cerebral Cortex, 23, 1695–1702.
pubmed: 22693341
doi: 10.1093/cercor/bhs163
Peters, J., & Büchel, C. (2011). The neural mechanisms of inter-temporal decision-making: Understanding variability. Trends in Cognitive Sciences, 15, 227–239.
pubmed: 21497544
doi: 10.1016/j.tics.2011.03.002
Peters, S. K., Dunlop, K., & Downar, J. (2016). Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment. Frontiers in Systems Neuroscience, 10, 104.
pubmed: 28082874
pmcid: 5187454
doi: 10.3389/fnsys.2016.00104
Rădulescu, A., Herron, J., Kennedy, C., & Scimemi, A. (2017). Global and local excitation and inhibition shape the dynamics of the cortico-striatal-thalamo-cortical pathway. Scientific Reports, 7(1), 7608–7621.
pubmed: 28790376
pmcid: 5548923
doi: 10.1038/s41598-017-07527-8
Schmidt, A., Denier, N., Magon, S., Radue, E. W., Huber, C. G., Riecher-Rossler, A., et al. (2015). Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution. Translational Psychiatry, 5(3), E533.
pubmed: 25803496
pmcid: 4354356
doi: 10.1038/tp.2015.28
Seah, S., Asad, A., Baumgartner, R., Feng, D., Williams, D., Manigbas, E., et al. (2014). Investigation of cross-species translatability of pharmacological MRI in awake nonhuman primate - a buprenorphine challenge study. PLoS One, 9(10), E110432.
pubmed: 25337714
pmcid: 4206294
doi: 10.1371/journal.pone.0110432
Shah, Y. B., Haynes, L., Prior, M. J. W., Marsden, C. A., Morris, P. G., & Chapman, V. (2005). Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxious-evoked BOLD contrast in rats. Psychopharmacology, 180(4), 761–773.
pubmed: 15778889
doi: 10.1007/s00213-005-2214-6
Stevens, F. L., Hurley, R. A., Taber, K. H., Hayman, L. A., Hurley, R. A., & Taber, K. H. (2011). Anterior cingulate cortex: Unique role in cognition and emotion. The Journal of Neuropsychiatry and Clinical Neurosciences, 23(2), 121–125.
pubmed: 21677237
doi: 10.1176/jnp.23.2.jnp121
Ting, J. T., & Feng, G. (2011). Neurobiology of obsessive–compulsive disorder: Insights into neural circuitry dysfunction through mouse genetics. Current Opinion in Neurobiology, 21(6), 842–848.
pubmed: 21605970
pmcid: 3192923
doi: 10.1016/j.conb.2011.04.010
Ting-A-Kee, R., & Van der Kooy, D. (2012). The neurobiology of opiate motivation. Cold Spring Harbor Perspectives in Medicine, 2(10), A012096.
pubmed: 23028134
pmcid: 3475407
doi: 10.1101/cshperspect.a012096
Upadhyay, J., Maleki, N., Potter, J., Elman, I., Rudrauf, D., Knudsen, J., et al. (2010). Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain (London, England : 1878), 133(7), 2098–2114.
Vargas-Perez, H., Ting-A-Kee, R. A., Heinmiller, A., Sturgess, J. E., & Van Der Kooy, D. (2007). A test of the opponent-process theory of motivation using lesions that selectively block morphine reward. The European Journal of Neuroscience, 25(12), 3713–3718.
pubmed: 17610590
doi: 10.1111/j.1460-9568.2007.05599.x
Virk, M. S., & Williams, J. T. (2008). Agonist-specific regulation of mu-opioid receptor desensitization and recovery from desensitization. Molecular Pharmacology, 73(4), 1301–1308.
pubmed: 18198283
doi: 10.1124/mol.107.042952
Volkow, N. D., Fowler, J. S., & Wang, G. (2004). The addicted human brain viewed in the light of imaging studies: Brain circuits and treatment strategies. Neuropharmacology, 47, 3–13.
pubmed: 15464121
doi: 10.1016/j.neuropharm.2004.07.019
Volkow, N. D., Fowler, J. S., Wang, G., Swanson, J. M., & Telang, F. (2007). Dopamine in drug abuse and addiction: Results of imaging studies and treatment implications. Archives of Neurology (Chicago), 64(11), 1575–1579.
doi: 10.1001/archneur.64.11.1575
Walter, M., Denier, N., Gerber, H., Schmid, O., Lanz, C., Brenneisen, R., et al. (2015). Orbitofrontal response to drug-related stimuli after heroin administration. Addiction Biology, 20(3), 570–579.
pubmed: 24720731
doi: 10.1111/adb.12145
Wardle, M. C., Fitzgerald, D. A., Angstadt, M., Rabinak, C. A., De Wit, H., & Phan, K. L. (2014). Effects of oxycodone on brain responses to emotional images. Psychopharmacology, 231(22), 4403–4415.
pubmed: 24800897
pmcid: 6720110
doi: 10.1007/s00213-014-3592-4
Xu, T., Falchier, A., Sullivan, E. L., Linn, G., Ramirez, J. S. B., Ross, D., et al. (2018). Delineating the macroscale areal Organization of the Macaque Cortex in Vivo. Cell Reports (Cambridge), 23(2), 429–441.
doi: 10.1016/j.celrep.2018.03.049