Localization of Long Noncoding RNA in Formalin-Fixed, Paraffin-Embedded Vascular Tissue Using In Situ Hybridization.
In situ hybridization
Localization
Long noncoding RNA
Vascular
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
3
3
2022
pubmed:
4
3
2022
medline:
5
3
2022
Statut:
ppublish
Résumé
In situ hybridization (ISH) is a technique for the detection of the location of RNA within a tissue of interest. This process uses oligonucleotides with complementary sequences to bind to the target RNA, and colorimetric detection to allow for the visualization of this binding. The process of ISH means that the specific location of the RNA in question can be detected, including in which cell types it is present, and the intracellular location. In the case of long noncoding RNA (lncRNA), which do not lead to the production of proteins, ISH is essential for tissue localization. Moreover, RNA abundance is often lower than for protein-coding genes, thus necessitating enhanced detection through double-digoxigenin (DIG) labeling of the probes. Here, we describe the theory and practicalities of performing ISH for lncRNA, with particular reference to vascular tissues.
Identifiants
pubmed: 35237995
doi: 10.1007/978-1-0716-1924-7_41
doi:
Substances chimiques
RNA, Long Noncoding
0
Formaldehyde
1HG84L3525
Digoxigenin
NQ1SX9LNAU
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
659-670Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Jørgensen S, Baker A, Møller S, Nielsen BS (2010) Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods 52(4):375–381. https://doi.org/10.1016/j.ymeth.2010.07.002
doi: 10.1016/j.ymeth.2010.07.002
pubmed: 20621190
Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874. https://doi.org/10.1038/nrg3074
doi: 10.1038/nrg3074
pubmed: 22094949
Hung J, Miscianinov V, Sluimer JC, Newby DE, Baker AH (2018) Targeting non-coding RNA in vascular biology and disease. Front Physiol 9:1655. https://doi.org/10.3389/fphys.2018.01655
doi: 10.3389/fphys.2018.01655
pubmed: 30524312
pmcid: 6262071
Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116(4):737–750. https://doi.org/10.1161/circresaha.116.302521
doi: 10.1161/circresaha.116.302521
pubmed: 25677520
Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, Schuler G, Thiery J, Teupser D (2010) ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 30(3):620–627. https://doi.org/10.1161/atvbaha.109.196832
doi: 10.1161/atvbaha.109.196832
pubmed: 20056914
Hung J, Scanlon JP, Mahmoud AD, Rodor J, Ballantyne M, Fontaine MAC, Temmerman L, Kaczynski J, Connor KL, Bhushan R, Biessen EAL, Newby DE, Sluimer JC, Baker AH (2020) Novel plaque enriched long noncoding RNA in atherosclerotic macrophage regulation (PELATON). Arterioscler Thromb Vasc Biol 40(3):697–713. https://doi.org/10.1161/atvbaha.119.313430
doi: 10.1161/atvbaha.119.313430
pubmed: 31826651
Ishii N, Ozaki K, Sato H, Mizuno H, Susumu S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Satoshi S, Nakamura Y, Tanaka T (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51(12):1087–1099. https://doi.org/10.1007/s10038-006-0070-9
doi: 10.1007/s10038-006-0070-9
pubmed: 17066261
Zangrando J, Zhang L, Vausort M, Maskali F, Marie PY, Wagner DR, Devaux Y (2014) Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics 15(1):460. https://doi.org/10.1186/1471-2164-15-460
doi: 10.1186/1471-2164-15-460
pubmed: 24917243
pmcid: 4070571
Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115(7):668–677. https://doi.org/10.1161/circresaha.115.303836
doi: 10.1161/circresaha.115.303836
pubmed: 25035150
Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64(2):600–604. https://doi.org/10.1073/pnas.64.2.600
doi: 10.1073/pnas.64.2.600
pubmed: 5261036
pmcid: 223386
Gall JG (2016) The origin of in situ hybridization—a personal history. Methods 98:4–9. https://doi.org/10.1016/j.ymeth.2015.11.026
doi: 10.1016/j.ymeth.2015.11.026
pubmed: 26655524
Tanner M, Gancberg D, Di Leo A, Larsimont D, Rouas G, Piccart MJ, Isola J (2000) Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol 157(5):1467–1472. https://doi.org/10.1016/s0002-9440(10)64785-2
doi: 10.1016/s0002-9440(10)64785-2
pubmed: 11073807
pmcid: 1885742