Localization of Long Noncoding RNA in Formalin-Fixed, Paraffin-Embedded Vascular Tissue Using In Situ Hybridization.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 3 3 2022
pubmed: 4 3 2022
medline: 5 3 2022
Statut: ppublish

Résumé

In situ hybridization (ISH) is a technique for the detection of the location of RNA within a tissue of interest. This process uses oligonucleotides with complementary sequences to bind to the target RNA, and colorimetric detection to allow for the visualization of this binding. The process of ISH means that the specific location of the RNA in question can be detected, including in which cell types it is present, and the intracellular location. In the case of long noncoding RNA (lncRNA), which do not lead to the production of proteins, ISH is essential for tissue localization. Moreover, RNA abundance is often lower than for protein-coding genes, thus necessitating enhanced detection through double-digoxigenin (DIG) labeling of the probes. Here, we describe the theory and practicalities of performing ISH for lncRNA, with particular reference to vascular tissues.

Identifiants

pubmed: 35237995
doi: 10.1007/978-1-0716-1924-7_41
doi:

Substances chimiques

RNA, Long Noncoding 0
Formaldehyde 1HG84L3525
Digoxigenin NQ1SX9LNAU

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

659-670

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Jørgensen S, Baker A, Møller S, Nielsen BS (2010) Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods 52(4):375–381. https://doi.org/10.1016/j.ymeth.2010.07.002
doi: 10.1016/j.ymeth.2010.07.002 pubmed: 20621190
Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874. https://doi.org/10.1038/nrg3074
doi: 10.1038/nrg3074 pubmed: 22094949
Hung J, Miscianinov V, Sluimer JC, Newby DE, Baker AH (2018) Targeting non-coding RNA in vascular biology and disease. Front Physiol 9:1655. https://doi.org/10.3389/fphys.2018.01655
doi: 10.3389/fphys.2018.01655 pubmed: 30524312 pmcid: 6262071
Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116(4):737–750. https://doi.org/10.1161/circresaha.116.302521
doi: 10.1161/circresaha.116.302521 pubmed: 25677520
Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, Schuler G, Thiery J, Teupser D (2010) ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 30(3):620–627. https://doi.org/10.1161/atvbaha.109.196832
doi: 10.1161/atvbaha.109.196832 pubmed: 20056914
Hung J, Scanlon JP, Mahmoud AD, Rodor J, Ballantyne M, Fontaine MAC, Temmerman L, Kaczynski J, Connor KL, Bhushan R, Biessen EAL, Newby DE, Sluimer JC, Baker AH (2020) Novel plaque enriched long noncoding RNA in atherosclerotic macrophage regulation (PELATON). Arterioscler Thromb Vasc Biol 40(3):697–713. https://doi.org/10.1161/atvbaha.119.313430
doi: 10.1161/atvbaha.119.313430 pubmed: 31826651
Ishii N, Ozaki K, Sato H, Mizuno H, Susumu S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Satoshi S, Nakamura Y, Tanaka T (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51(12):1087–1099. https://doi.org/10.1007/s10038-006-0070-9
doi: 10.1007/s10038-006-0070-9 pubmed: 17066261
Zangrando J, Zhang L, Vausort M, Maskali F, Marie PY, Wagner DR, Devaux Y (2014) Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics 15(1):460. https://doi.org/10.1186/1471-2164-15-460
doi: 10.1186/1471-2164-15-460 pubmed: 24917243 pmcid: 4070571
Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115(7):668–677. https://doi.org/10.1161/circresaha.115.303836
doi: 10.1161/circresaha.115.303836 pubmed: 25035150
Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64(2):600–604. https://doi.org/10.1073/pnas.64.2.600
doi: 10.1073/pnas.64.2.600 pubmed: 5261036 pmcid: 223386
Gall JG (2016) The origin of in situ hybridization—a personal history. Methods 98:4–9. https://doi.org/10.1016/j.ymeth.2015.11.026
doi: 10.1016/j.ymeth.2015.11.026 pubmed: 26655524
Tanner M, Gancberg D, Di Leo A, Larsimont D, Rouas G, Piccart MJ, Isola J (2000) Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol 157(5):1467–1472. https://doi.org/10.1016/s0002-9440(10)64785-2
doi: 10.1016/s0002-9440(10)64785-2 pubmed: 11073807 pmcid: 1885742

Auteurs

Jessica P Scanlon (JP)

BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK.

Andrew H Baker (AH)

BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK.
Department of Pathology, School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands.

Judith C Sluimer (JC)

BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK. Judith.sluimer@maastrichtuniversity.nl.
Department of Pathology, School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands. Judith.sluimer@maastrichtuniversity.nl.

Articles similaires

Humans Pulmonary Disease, Chronic Obstructive RNA, Long Noncoding Male Female
Humans Small Cell Lung Carcinoma RNA, Long Noncoding Sulfonamides Animals
Humans Female Ovarian Neoplasms Cell Proliferation RNA, Long Noncoding
Humans Temozolomide RNA, Long Noncoding Glioblastoma Drug Resistance, Neoplasm

Classifications MeSH