Electrophysiology and Arrhythmogenesis in the Human Right Ventricular Outflow Tract.
acetylcholine
arrhythmias, cardiac
heart ventricles
isoproterenol
ventricular premature complexes
Journal
Circulation. Arrhythmia and electrophysiology
ISSN: 1941-3084
Titre abrégé: Circ Arrhythm Electrophysiol
Pays: United States
ID NLM: 101474365
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
pubmed:
4
3
2022
medline:
4
5
2022
entrez:
3
3
2022
Statut:
ppublish
Résumé
Right ventricular outflow tract (RVOT) is a common source of ventricular tachycardia, which often requires ablation. However, the mechanisms underlying the RVOT's unique arrhythmia susceptibility remain poorly understood due to lack of detailed electrophysiological and molecular studies of the human RVOT. We conducted optical mapping studies in 16 nondiseased donor human RVOT preparations subjected to pharmacologically induced adrenergic and cholinergic stimulation to evaluate susceptibility to arrhythmias and characterize arrhythmia dynamics. We found that under control conditions, RVOT has shorter action potential duration at 80% repolarization relative to the right ventricular apical region. Treatment with isoproterenol (100 nM) shortened action potential duration at 80% repolarization and increased incidence of premature ventricular contractions ( Human RVOT electrophysiology is characterized by shorter action potential duration relative to the right ventricular apical region. Cholinergic right ventricular stimulation attenuates the arrhythmogenic effects of adrenergic stimulation, including increase in frequency of premature ventricular contractions and shortening of wavelength. Right ventricular arrhythmia is characterized by positive spatial-temporal autocorrelation between epicardial-endocardial arrhythmic wave fronts and rotors that are relatively more organized in the endocardium.
Sections du résumé
BACKGROUND
Right ventricular outflow tract (RVOT) is a common source of ventricular tachycardia, which often requires ablation. However, the mechanisms underlying the RVOT's unique arrhythmia susceptibility remain poorly understood due to lack of detailed electrophysiological and molecular studies of the human RVOT.
METHODS
We conducted optical mapping studies in 16 nondiseased donor human RVOT preparations subjected to pharmacologically induced adrenergic and cholinergic stimulation to evaluate susceptibility to arrhythmias and characterize arrhythmia dynamics.
RESULTS
We found that under control conditions, RVOT has shorter action potential duration at 80% repolarization relative to the right ventricular apical region. Treatment with isoproterenol (100 nM) shortened action potential duration at 80% repolarization and increased incidence of premature ventricular contractions (
CONCLUSIONS
Human RVOT electrophysiology is characterized by shorter action potential duration relative to the right ventricular apical region. Cholinergic right ventricular stimulation attenuates the arrhythmogenic effects of adrenergic stimulation, including increase in frequency of premature ventricular contractions and shortening of wavelength. Right ventricular arrhythmia is characterized by positive spatial-temporal autocorrelation between epicardial-endocardial arrhythmic wave fronts and rotors that are relatively more organized in the endocardium.
Identifiants
pubmed: 35238622
doi: 10.1161/CIRCEP.121.010630
pmc: PMC9052172
mid: NIHMS1782067
doi:
Substances chimiques
Adrenergic Agents
0
Cholinergic Agents
0
Isoproterenol
L628TT009W
Acetylcholine
N9YNS0M02X
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e010630Subventions
Organisme : NHLBI NIH HHS
ID : K99 HL148523
Pays : United States
Références
Am J Physiol. 1997 Jun;272(6 Pt 2):H2525-33
pubmed: 9227527
Heart Rhythm. 2010 Aug;7(8):1113-9
pubmed: 20381645
Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H421-8
pubmed: 16648179
Ann Biomed Eng. 1997 Sep-Oct;25(5):761-8
pubmed: 9300100
Circ Res. 2010 Apr 30;106(8):1434-43
pubmed: 20339119
Circ Res. 2015 Jun 5;116(12):2005-19
pubmed: 26044253
Annu Rev Physiol. 2000;62:25-50
pubmed: 10845083
Am J Physiol Heart Circ Physiol. 2015 Feb 15;308(4):H331-8
pubmed: 25398981
JACC Clin Electrophysiol. 2020 Mar;6(3):292-294
pubmed: 32192679
Cardiovasc Pathol. 2005 Jan-Feb;14(1):37-41
pubmed: 15710290
Cardiovasc Pathol. 2020 Sep - Oct;48:107224
pubmed: 32480283
Circ Res. 2013 Jul 5;113(2):137-41
pubmed: 23661717
Circulation. 1998 Oct 13;98(15):1525-33
pubmed: 9769306
Circ Res. 2017 Jun 9;120(12):1969-1993
pubmed: 28596175
Am J Physiol Cell Physiol. 2016 Jan 1;310(1):C41-53
pubmed: 26491050
J Physiol. 2016 Jul 15;594(14):4017-30
pubmed: 26940639
J Am Coll Cardiol. 2020 Sep 8;76(10):1197-1211
pubmed: 32883413
Life Sci. 2005 May 20;77(1):52-9
pubmed: 15848218
J Physiol. 2007 Jul 15;582(Pt 2):675-93
pubmed: 17478540
J Anat. 2016 Jan;228(1):26-46
pubmed: 26510903
Heart Rhythm. 2020 Jan;17(1):123-130
pubmed: 31377422
Front Cardiovasc Med. 2017 May 23;4:30
pubmed: 28589126
J Physiol. 2016 Jul 15;594(14):3851-2
pubmed: 27417670
Circulation. 2001 Feb 6;103(5):769-77
pubmed: 11156892
Heart Rhythm. 2011 May;8(5):731-8
pubmed: 21232628
Circ Arrhythm Electrophysiol. 2010 Dec;3(6):606-15
pubmed: 20719881
J Cardiovasc Dis Res. 2010 Jan;1(1):12-8
pubmed: 21188084
Heart Rhythm. 2009 Mar;6(3):405-15
pubmed: 19251220
Am J Physiol Heart Circ Physiol. 2019 Jun 1;316(6):H1507-H1527
pubmed: 30875259
Heart. 2017 Mar;103(5):347-354
pubmed: 28051771
Nat Biomed Eng. 2019 Mar;3(3):194-205
pubmed: 30948811
Circ Arrhythm Electrophysiol. 2015 Apr;8(2):456-65
pubmed: 25713215
Cardiovasc Res. 2018 Apr 1;114(5):724-736
pubmed: 29267949
Front Physiol. 2020 Dec 22;11:617459
pubmed: 33414727
J Am Coll Cardiol. 2005 Oct 4;46(7):1288-94
pubmed: 16198845
J Am Coll Cardiol. 2015 Mar 10;65(9):867-75
pubmed: 25744003
J Physiol. 2013 Sep 1;591(17):4073-85
pubmed: 23878363
Circulation. 2007 Sep 4;116(10):1113-9
pubmed: 17698730
JACC Clin Electrophysiol. 2020 Mar;6(3):282-291
pubmed: 32192678
JACC Clin Electrophysiol. 2020 Oct 26;6(11):1395-1404
pubmed: 33121669
Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H262-9
pubmed: 22037192
Int J Mol Sci. 2020 Sep 25;21(19):
pubmed: 32992720
Circ Heart Fail. 2013 Nov;6(6):1268-83
pubmed: 24255056
Heart Rhythm. 2006 Sep;3(9):1043-50
pubmed: 16945799
Circ Arrhythm Electrophysiol. 2018 Nov;11(11):e006692
pubmed: 30376733
J Cardiovasc Electrophysiol. 2009 Aug;20(8):955-68
pubmed: 19490263
J Neural Eng. 2016 Apr;13(2):026030-26030
pubmed: 26975462
Eur Heart J. 2021 Mar 14;42(11):1073-1081
pubmed: 33421051
J Cardiovasc Electrophysiol. 2018 Aug;29(8):1181-1188
pubmed: 29659078