Preparation and Use of Cellular Reagents: A Low-resource Molecular Biology Reagent Platform.

DIY equipment cellular reagents dried bacteria local production of molecular reagents low-cost molecular biology reagents nucleic acid amplification reagents

Journal

Current protocols
ISSN: 2691-1299
Titre abrégé: Curr Protoc
Pays: United States
ID NLM: 101773894

Informations de publication

Date de publication:
Mar 2022
Historique:
entrez: 9 3 2022
pubmed: 10 3 2022
medline: 12 3 2022
Statut: ppublish

Résumé

Protein reagents are indispensable for most molecular and synthetic biology procedures. Most conventional protocols rely on highly purified protein reagents that require considerable expertise, time, and infrastructure to produce. In consequence, most proteins are acquired from commercial sources, reagent expense is often high, and accessibility may be hampered by shipping delays, customs barriers, geopolitical constraints, and the need for a constant cold chain. Such limitations to the widespread availability of protein reagents, in turn, limit the expansion and adoption of molecular biology methods in research, education, and technology development and application. Here, we describe protocols for producing a low-resource and locally sustainable reagent delivery system, termed "cellular reagents," in which bacteria engineered to overexpress proteins of interest are dried and can then be used directly as reagent packets in numerous molecular biology reactions, without the need for protein purification or a constant cold chain. As an example of their application, we describe the execution of polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) using cellular reagents, detailing how to replace pure protein reagents with optimal amounts of rehydrated cellular reagents. We additionally describe a do-it-yourself fluorescence visualization device for using these cellular reagents in common molecular biology applications. The methods presented in this article can be used for low-cost, on-site production of commonly used molecular biology reagents (including DNA and RNA polymerases, reverse transcriptases, and ligases) with minimal instrumentation and expertise, and without the need for protein purification. Consequently, these methods should generally make molecular biology reagents more affordable and accessible. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cellular reagents Alternate Protocol 1: Preparation of lyophilized cellular reagents Alternate Protocol 2: Evaluation of bacterial culture growth via comparison to McFarland turbidity standards Support Protocol 1: SDS-PAGE for protein expression analysis of cellular reagents Basic Protocol 2: Using Taq DNA polymerase cellular reagents for PCR Basic Protocol 3: Using Br512 DNA polymerase cellular reagents for loop-mediated isothermal amplification (LAMP) Support Protocol 2: Building a fluorescence visualization device.

Identifiants

pubmed: 35263038
doi: 10.1002/cpz1.387
pmc: PMC9094432
mid: NIHMS1790503
doi:

Substances chimiques

Indicators and Reagents 0
DNA 9007-49-2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e387

Subventions

Organisme : NIBIB NIH HHS
ID : R01 EB027202
Pays : United States
Organisme : Welch Foundation
ID : F-1654
Organisme : Bill and Melinda Gates Foundation
ID : OPP1182120
Organisme : NIH HHS
ID : 1-R01-EB027202-01A1
Pays : United States

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Curr Protoc Protein Sci. 2001 May;Chapter 5:Unit5.1
pubmed: 18429175
Viruses. 2018 Dec 14;10(12):
pubmed: 30558136
Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2216-20
pubmed: 8134376
Science. 2017 Feb 24;355(6327):
pubmed: 28232526
J Basic Microbiol. 1995;35(1):41-6
pubmed: 7738787
PLoS One. 2018 Aug 15;13(8):e0201681
pubmed: 30110361
J Biochem Biophys Methods. 2004 May 31;59(2):145-57
pubmed: 15163526
Glob Health Action. 2018;11(1):1419033
pubmed: 29336236
Gene. 1995 Sep 22;163(1):65-8
pubmed: 7557480
Biochemistry. 2021 Nov 11;:
pubmed: 34762799
Nucleic Acids Res. 2000 Jun 15;28(12):E63
pubmed: 10871386
Clin Chem. 2009 Apr;55(4):611-22
pubmed: 19246619
mSphere. 2021 May 19;6(3):
pubmed: 34011690
Water Res. 2018 Mar 15;131:186-195
pubmed: 29278789
Protein Expr Purif. 2006 Jul;48(1):1-13
pubmed: 16427311
Curr Protoc Mol Biol. 2019 Jan;125(1):e83
pubmed: 30412361
Res Microbiol. 2002 Jan-Feb;153(1):7-12
pubmed: 11881900
Curr Protoc Microbiol. 2009 May;Chapter 1:Unit 1A.1
pubmed: 19412909
Methods Mol Biol. 2007;353:237-61
pubmed: 17332645
Front Microbiol. 2014 Apr 17;5:172
pubmed: 24860555
Biotechniques. 2012 Aug;53(2):81-9
pubmed: 23030060
Microb Biotechnol. 2018 Mar;11(2):277-301
pubmed: 29205959
Microb Cell Fact. 2012 Jan 20;11:11
pubmed: 22264280
Curr Protoc Protein Sci. 2015 Apr 01;80:6.1.1-6.1.35
pubmed: 25829302
Science. 2016 Jun 24;352(6293):1590-3
pubmed: 27339990
Appl Environ Microbiol. 1992 Nov;58(11):3472-81
pubmed: 16348799
J Gen Microbiol. 1991 Oct;137(10):2361-74
pubmed: 1722814
Curr Protoc. 2021 Apr;1(4):e130
pubmed: 33905620
PLoS One. 2021 Jun 1;16(6):e0252507
pubmed: 34061896
J Bacteriol. 1976 Sep;127(3):1550-7
pubmed: 8432
PLoS Biol. 2019 May 21;17(5):e3000251
pubmed: 31112539
Curr Protoc Protein Sci. 2010 Aug;Chapter 5:Unit 5.24.1-29
pubmed: 20814932
Nucleic Acids Res. 1993 Jan 25;21(2):259-65
pubmed: 8441634
Proc Natl Acad Sci U S A. 1967 Nov;58(5):1996-2003
pubmed: 4295584
PLoS One. 2020 Jun 12;15(6):e0234682
pubmed: 32530929
Mol Cell Probes. 2002 Jun;16(3):223-9
pubmed: 12144774
Microbiol Rev. 1994 Dec;58(4):755-805
pubmed: 7854254
J Biol Chem. 1985 Aug 5;260(16):9326-35
pubmed: 2410413
Nat Protoc. 2008;3(5):877-82
pubmed: 18451795
Curr Protoc Protein Sci. 2014 Nov 03;78:6.2.1-6.2.22
pubmed: 25367009
Curr Protoc. 2021 Jan;1(1):e20
pubmed: 33484484
Biotechnol Bioeng. 1990 Mar 25;35(7):668-81
pubmed: 18592563
Biotechniques. 2015 Feb 01;58(2):59-68
pubmed: 25652028
Chembiochem. 2017 Sep 5;18(17):1692-1695
pubmed: 28628741
PLoS Negl Trop Dis. 2018 Aug 30;12(8):e0006671
pubmed: 30161131
Biochem Biophys Res Commun. 1967 Aug 23;28(4):578-86
pubmed: 6052493
Am J Clin Pathol. 2014 Jan;141(1):17-24
pubmed: 24343733
J Ind Microbiol. 1996 Mar;16(3):145-54
pubmed: 8652113
Biotechnol Lett. 2014 Jul;36(7):1391-406
pubmed: 24658742
Anal Chem. 2015 Mar 17;87(6):3314-20
pubmed: 25708458
Protein Expr Purif. 2017 Jan;129:18-24
pubmed: 27614048
Nucleic Acids Res. 2004 Feb 18;32(3):1197-207
pubmed: 14973201

Auteurs

Sanchita Bhadra (S)

Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas.
Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas.

Inyup Paik (I)

Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas.
Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas.

Jose-Angel Torres (JA)

Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas.
McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.

Stéphane Fadanka (S)

Mboalab Biotech, Yaoundé, Cameroon.

Chiara Gandini (C)

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
Nuclera Nucleics Ltd., Cambridge, UK.

Harry Akligoh (H)

Hive Biolab, Kentinkrono, Kumasi, Ghana.

Jenny Molloy (J)

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.

Andrew D Ellington (AD)

Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas.
Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas.

Articles similaires

Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation
DNA Methylation Humans DNA Animals Machine Learning
DNA Glycosylases Nucleosomes Humans 8-Hydroxy-2'-Deoxyguanosine DNA Repair
Alleles Benchmarking Transcription Factors Humans Chromatin Immunoprecipitation Sequencing

Classifications MeSH