Mutagenesis of bracelet cyclotide hyen D reveals functionally and structurally critical residues for membrane binding and cytotoxicity.

NMR cancer cell cytotoxicity cyclic peptide cyclotide peptide chemical synthesis peptide-membrane interaction site-directed mutagenesis surface plasmon resonance

Journal

The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R

Informations de publication

Date de publication:
04 2022
Historique:
received: 14 09 2021
revised: 19 02 2022
accepted: 21 02 2022
pubmed: 15 3 2022
medline: 27 4 2022
entrez: 14 3 2022
Statut: ppublish

Résumé

Cyclotides have a wide range of bioactivities relevant for agricultural and pharmaceutical applications. This large family of naturally occurring macrocyclic peptides is divided into three subfamilies, with the bracelet subfamily being the largest and comprising the most potent cyclotides reported to date. However, attempts to harness the natural bioactivities of bracelet cyclotides and engineer-optimized analogs have been hindered by a lack of understanding of the structural and functional role of their constituent residues, which has been challenging because bracelet cyclotides are difficult to produce synthetically. We recently established a facile strategy to make the I11L mutant of cyclotide hyen D that is as active as the parent peptide, enabling the subsequent production of a series of variants. In the current study, we report an alanine mutagenesis structure-activity study of [I11L] hyen D to probe the role of individual residues on peptide folding using analytical chromatography, on molecular function using surface plasmon resonance, and on therapeutic potential using cytotoxicity assays. We found that Glu-6 and Thr-15 are critical for maintaining the structure of bracelet cyclotides and that hydrophobic residues in loops 2 and 3 are essential for membrane binding and cytotoxic activity, findings that are distinct from the structural and functional characteristics determined for other cyclotide subfamilies. In conclusion, this is the first report of a mutagenesis scan conducted on a bracelet cyclotide, offering insights into their function and supporting future efforts to engineer bracelet cyclotides for biotechnological applications.

Identifiants

pubmed: 35283188
pii: S0021-9258(22)00262-9
doi: 10.1016/j.jbc.2022.101822
pmc: PMC9006653
pii:
doi:

Substances chimiques

Cyclotides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

101822

Informations de copyright

Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.

Références

Protein Sci. 2018 Jan;27(1):293-315
pubmed: 29067766
J Biol Chem. 2020 Aug 7;295(32):10911-10925
pubmed: 32414842
J Biol Chem. 2010 Apr 2;285(14):10797-805
pubmed: 20103593
Chembiochem. 2009 Sep 21;10(14):2354-60
pubmed: 19735083
Biochemistry. 1995 Apr 4;34(13):4147-58
pubmed: 7703226
Nucleic Acids Res. 2008 Jan;36(Database issue):D206-10
pubmed: 17986451
Biochim Biophys Acta. 2011 Nov;1808(11):2665-73
pubmed: 21787745
J Biol Chem. 2003 Mar 7;278(10):8606-16
pubmed: 12482868
Nat Protoc. 2007;2(11):2728-33
pubmed: 18007608
Biochemistry. 2011 May 17;50(19):4077-86
pubmed: 21466163
Cell Mol Life Sci. 2006 Jan;63(2):235-45
pubmed: 16389447
J Mol Biol. 1999 Dec 17;294(5):1327-36
pubmed: 10600388
J Biol Chem. 2009 Apr 17;284(16):10672-83
pubmed: 19211551
J Phys Chem B. 2021 Apr 15;125(14):3476-3485
pubmed: 33787269
J Nat Prod. 2012 Feb 24;75(2):167-74
pubmed: 22272797
Biochemistry. 1992 Feb 18;31(6):1647-51
pubmed: 1737021
Medicines (Basel). 2019 Feb 28;6(1):
pubmed: 30823453
J Mol Biol. 1997 Oct 17;273(1):283-98
pubmed: 9367762
J Nat Prod. 2020 Dec 24;83(12):3736-3743
pubmed: 33296204
Org Biomol Chem. 2011 Jun 7;9(11):4306-14
pubmed: 21491023
Chem Rev. 2019 Dec 26;119(24):12375-12421
pubmed: 31829013
Mol Cancer Ther. 2002 Apr;1(6):365-9
pubmed: 12477048
Biophys J. 2009 Sep 2;97(5):1471-81
pubmed: 19720036
Front Pharmacol. 2017 Jan 23;8:12
pubmed: 28167913
J Mol Graph. 1996 Feb;14(1):51-5, 29-32
pubmed: 8744573
J Biol Chem. 2008 Apr 11;283(15):9805-13
pubmed: 18258598
Chembiochem. 2008 Aug 11;9(12):1939-45
pubmed: 18618891
J Org Chem. 2014 Jun 20;79(12):5538-44
pubmed: 24918986
J Biol Chem. 2012 Sep 28;287(40):33629-43
pubmed: 22854971
J Nat Prod. 2008 Jan;71(1):47-52
pubmed: 18081258
Molecules. 2021 Sep 13;26(18):
pubmed: 34577034
Biopolymers. 2010;94(5):584-91
pubmed: 20564021
Chem Biol. 2015 Aug 20;22(8):1087-97
pubmed: 26278183
J Biomol NMR. 1995 Jan;5(1):67-81
pubmed: 7881273
Front Plant Sci. 2018 Sep 11;9:1296
pubmed: 30254654
Peptides. 2010 Aug;31(8):1434-40
pubmed: 20580652
FEBS J. 2006 Jun;273(12):2658-72
pubmed: 16817894
Toxicon. 2019 Oct 25;172:33-44
pubmed: 31682883
Biochemistry. 2005 Jan 25;44(3):851-60
pubmed: 15654741
J Nat Prod. 2007 Apr;70(4):643-7
pubmed: 17378610
Biopolymers. 2010;94(5):647-58
pubmed: 20564013
Biochemistry. 2000 May 16;39(19):5722-30
pubmed: 10801322

Auteurs

Qingdan Du (Q)

Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia.

Yen-Hua Huang (YH)

Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia. Electronic address: y.huang@imb.uq.edu.au.

Conan K Wang (CK)

Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia.

Quentin Kaas (Q)

Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia.

David J Craik (DJ)

Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia. Electronic address: d.craik@imb.uq.edu.au.

Articles similaires

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Structural basis for molecular assembly of fucoxanthin chlorophyll

Koji Kato, Yoshiki Nakajima, Jian Xing et al.
1.00
Diatoms Photosystem I Protein Complex Chlorophyll Binding Proteins Cryoelectron Microscopy Light-Harvesting Protein Complexes

Classifications MeSH