Nanoporous Gold Catalyst for the Oxidative N-Dealkylation of Drug Molecules: A Method for Synthesis of N-Dealkylated Metabolites.
N-dealkylation
catalysis
drug metabolite
metabolite synthesis
nanoporous gold
Journal
ChemMedChem
ISSN: 1860-7187
Titre abrégé: ChemMedChem
Pays: Germany
ID NLM: 101259013
Informations de publication
Date de publication:
03 06 2022
03 06 2022
Historique:
revised:
17
03
2022
received:
20
01
2022
pubmed:
19
3
2022
medline:
10
6
2022
entrez:
18
3
2022
Statut:
ppublish
Résumé
A novel method for the selective catalytic N-dealkylation of drug molecules on a nanoporous gold (NPG) catalyst producing valuable N-dealkylated metabolites and intermediates is described. Drug metabolites are important chemical entities at every stage of drug discovery and development, from exploratory discovery to clinical development, providing the safety profiles and the ADME (adsorption, distribution, metabolism, and elimination) of new drug candidates. Synthesis was carried out in aqueous solution at 80 °C using air (oxygen source) as oxidant, in single step with good isolated yields. Different examples examined in this study showed that aerobic catalytic N-dealkylation of drug molecules on NPG has a broad scope supporting N-deethylation, N-deisopropylation and N-demethylation, converting either 3° amines to 2° amines, or 2° amines to 1° amines.
Identifiants
pubmed: 35303400
doi: 10.1002/cmdc.202200040
pmc: PMC9320976
doi:
Substances chimiques
Amines
0
Gold
7440-57-5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202200040Informations de copyright
© 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH.
Références
Acc Chem Res. 2014 Mar 18;47(3):731-9
pubmed: 24266888
Nat Mater. 2012 Sep;11(9):775-80
pubmed: 22886067
J Org Chem. 2015 Jan 16;80(2):847-51
pubmed: 25521623
Drug Metab Dispos. 1988 Nov-Dec;16(6):834-41
pubmed: 2907462
Anal Chem. 2010 Sep 15;82(18):7625-33
pubmed: 20735006
Chem Commun (Camb). 2013 May 14;49(39):4214-6
pubmed: 23223161
Analyst. 2011 Dec 7;136(23):5064-7
pubmed: 21984979
ChemMedChem. 2022 Jun 3;17(11):e202200040
pubmed: 35303400
Angew Chem Int Ed Engl. 2010 Dec 27;49(52):10093-5
pubmed: 21117052
J Am Chem Soc. 2007 Jan 10;129(1):42-3
pubmed: 17199279
Angew Chem Int Ed Engl. 2012 Feb 13;51(7):1698-701
pubmed: 22223430
Chemistry. 2015 Oct 12;21(42):15039-47
pubmed: 26311271
Chemistry. 2018 Jul 2;24(37):9385-9392
pubmed: 29736963
Science. 2010 Jan 15;327(5963):319-22
pubmed: 20075249
Org Lett. 2013 Apr 5;15(7):1484-7
pubmed: 23496325
J Am Chem Soc. 2012 Oct 24;134(42):17536-42
pubmed: 23020313
Angew Chem Int Ed Engl. 2006 Dec 11;45(48):8241-4
pubmed: 17099919
Chem Commun (Camb). 2012 May 14;48(38):4540-2
pubmed: 22310729
Org Lett. 2013 Nov 15;15(22):5766-9
pubmed: 24160354
Phys Chem Chem Phys. 2010 Oct 28;12(40):12919-30
pubmed: 20820589
Biochem Pharmacol. 2011 Oct 1;82(7):789-96
pubmed: 21723855
Chem Commun (Camb). 2015 Aug 18;51(64):12764-7
pubmed: 26165690
J Am Chem Soc. 2016 Aug 17;138(32):10356-64
pubmed: 27430955
Nanomaterials (Basel). 2020 Nov 24;10(12):
pubmed: 33255480
Curr Drug Metab. 2011 May;12(4):359-71
pubmed: 21395527
Analyst. 2012 Oct 21;137(20):4698-702
pubmed: 22929863
Nature. 2019 Jun;570(7762):462-467
pubmed: 31158845
Science. 1971 Aug 6;173(3996):544-6
pubmed: 5564044