DNA methylation in Friedreich ataxia silences expression of frataxin isoform E.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 03 2022
Historique:
received: 07 11 2021
accepted: 14 03 2022
entrez: 24 3 2022
pubmed: 25 3 2022
medline: 6 5 2022
Statut: epublish

Résumé

Epigenetic silencing in Friedreich ataxia (FRDA), induced by an expanded GAA triplet-repeat in intron 1 of the FXN gene, results in deficiency of the mitochondrial protein, frataxin. A lesser known extramitochondrial isoform of frataxin detected in erythrocytes, frataxin-E, is encoded via an alternate transcript (FXN-E) originating in intron 1 that lacks a mitochondrial targeting sequence. We show that FXN-E is deficient in FRDA, including in patient-derived cell lines, iPS-derived proprioceptive neurons, and tissues from a humanized mouse model. In a series of FRDA patients, deficiency of frataxin-E protein correlated with the length of the expanded GAA triplet-repeat, and with repeat-induced DNA hypermethylation that occurs in close proximity to the intronic origin of FXN-E. CRISPR-induced epimodification to mimic DNA hypermethylation seen in FRDA reproduced FXN-E transcriptional deficiency. Deficiency of frataxin E is a consequence of FRDA-specific epigenetic silencing, and therapeutic strategies may need to address this deficiency.

Identifiants

pubmed: 35322126
doi: 10.1038/s41598-022-09002-5
pii: 10.1038/s41598-022-09002-5
pmc: PMC8943190
doi:

Substances chimiques

Iron-Binding Proteins 0
Protein Isoforms 0
DNA 9007-49-2

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5031

Subventions

Organisme : NINDS NIH HHS
ID : U01 NS114143
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES013508
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS072418
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Bidichandani, S. I. & Delatycki, M. B. Friedreich ataxia. In GeneReviews((R)) (editors Adam, M. P., et al.) (Seattle, WA, 1993).
Tsou, A. Y. et al. Mortality in Friedreich ataxia. J. Neurol. Sci. 307(1–2), 46–49 (2011).
pubmed: 21652007 doi: 10.1016/j.jns.2011.05.023
Durr, A. et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N. Engl. J. Med. 335(16), 1169–1175 (1996).
pubmed: 8815938 doi: 10.1056/NEJM199610173351601
Regner, S. R. et al. Friedreich ataxia clinical outcome measures: Natural history evaluation in 410 participants. J. Child. Neurol. 27(9), 1152–1158 (2012).
pubmed: 22752494 pmcid: 3674496 doi: 10.1177/0883073812448462
Metz, G. et al. Rating disease progression of Friedreich’s ataxia by the International Cooperative Ataxia Rating Scale: Analysis of a 603-patient database. Brain 136(Pt 1), 259–268 (2013).
pubmed: 23365101 pmcid: 3624678 doi: 10.1093/brain/aws309
Campuzano, V. et al. Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254), 1423–1427 (1996).
pubmed: 8596916 doi: 10.1126/science.271.5254.1423
Filla, A. et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am. J. Hum. Genet. 59(3), 554–560 (1996).
pubmed: 8751856 pmcid: 1914893
Montermini, L. et al. Phenotypic variability in Friedreich ataxia: Role of the associated GAA triplet repeat expansion. Ann. Neurol. 41(5), 675–682 (1997).
pubmed: 9153531 doi: 10.1002/ana.410410518
Delatycki, M. B. et al. Clinical and genetic study of Friedreich ataxia in an Australian population. Am. J. Med. Genet. 87(2), 168–174 (1999).
pubmed: 10533031 doi: 10.1002/(SICI)1096-8628(19991119)87:2<168::AID-AJMG8>3.0.CO;2-2
Herman, D. et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat. Chem. Biol. 2(10), 551–558 (2006).
pubmed: 16921367 doi: 10.1038/nchembio815
Greene, E., Mahishi, L., Entezam, A., Kumari, D. & Usdin, K. Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res. 35(10), 3383–3390 (2007).
pubmed: 17478498 pmcid: 1904289 doi: 10.1093/nar/gkm271
Al-Mahdawi, S. et al. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum. Mol. Genet. 17(5), 735–746 (2008).
pubmed: 18045775 doi: 10.1093/hmg/ddm346
Rai, M. et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One. 3(4), e1958 (2008).
pubmed: 18463734 pmcid: 2373517 doi: 10.1371/journal.pone.0001958
Soragni, E. et al. Long intronic GAA*TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res. 36(19), 6056–6065 (2008).
pubmed: 18820300 pmcid: 2577344 doi: 10.1093/nar/gkn604
Punga, T. & Buhler, M. Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol. Med. 2(4), 120–129 (2010).
pubmed: 20373285 pmcid: 3377279 doi: 10.1002/emmm.201000064
Kumari, D., Biacsi, R. E. & Usdin, K. Repeat expansion affects both transcription initiation and elongation in friedreich ataxia cells. J. Biol. Chem. 286(6), 4209–4215 (2011).
pubmed: 21127046 doi: 10.1074/jbc.M110.194035
Kim, E., Napierala, M. & Dent, S. Y. Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich’s ataxia. Nucleic Acids Res. 39(19), 8366–8377 (2011).
pubmed: 21745819 pmcid: 3201871 doi: 10.1093/nar/gkr542
Chutake, Y. K., Costello, W. N., Lam, C. & Bidichandani, S. I. Altered nucleosome positioning at the transcription start site and deficient transcriptional initiation in Friedreich ataxia. J. Biol. Chem. 289(22), 15194–15202 (2014).
pubmed: 24737321 pmcid: 4140879 doi: 10.1074/jbc.M114.566414
Chan, P. K. et al. Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich’s ataxia can be reduced upon HDAC inhibition by vitamin B3. Hum. Mol. Genet. 22(13), 2662–2675 (2013).
pubmed: 23474817 doi: 10.1093/hmg/ddt115
Li, Y. et al. Expanded GAA repeats impede transcription elongation through the FXN gene and induce transcriptional silencing that is restricted to the FXN locus. Hum. Mol. Genet. 24(24), 6932–6943 (2015).
pubmed: 26401053 pmcid: 4654050
Soragni, E. et al. Epigenetic therapy for Friedreich ataxia. Ann. Neurol. 76(4), 489–508 (2014).
pubmed: 25159818 pmcid: 4361037 doi: 10.1002/ana.24260
Rodden, L. N. et al. Methylated and unmethylated epialleles support variegated epigenetic silencing in Friedreich ataxia. Hum. Mol. Genet. 29(23), 3818–3829 (2021).
pubmed: 33432325 pmcid: 7861014 doi: 10.1093/hmg/ddaa267
Evans-Galea, M. V. et al. FXN methylation predicts expression and clinical outcome in Friedreich ataxia. Ann. Neurol. 71(4), 487–497 (2012).
pubmed: 22522441 doi: 10.1002/ana.22671
Castaldo, I. et al. DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich ataxia patients. J. Med. Genet. 45(12), 808–812 (2008).
pubmed: 18697824 doi: 10.1136/jmg.2008.058594
Bidichandani, S. I., Ashizawa, T. & Patel, P. I. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am. J. Hum. Genet. 62(1), 111–121 (1998).
pubmed: 9443873 pmcid: 1376805 doi: 10.1086/301680
Pianese, L. et al. Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers. J. Neurol. Neurosurg. Psychiatry 75(7), 1061–1063 (2004).
pubmed: 15201375 pmcid: 1739119 doi: 10.1136/jnnp.2003.028605
Chutake, Y. K., Lam, C., Costello, W. N., Anderson, M. & Bidichandani, S. I. Epigenetic promoter silencing in Friedreich ataxia is dependent on repeat length. Ann. Neurol. 76(4), 522–528 (2014).
pubmed: 25112975 pmcid: 4191993 doi: 10.1002/ana.24249
Erwin, G. S. et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science 358(6370), 1617–1622 (2017).
pubmed: 29192133 pmcid: 6037176 doi: 10.1126/science.aan6414
Grabczyk, E. & Usdin, K. The GAA*TTC triplet repeat expanded in Friedreich’s ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent manner. Nucleic Acids Res. 28(14), 2815–2822 (2000).
pubmed: 10908340 pmcid: 102661 doi: 10.1093/nar/28.14.2815
Guo, L. et al. Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes. Sci. Rep. 8(1), 17043 (2018).
pubmed: 30451920 pmcid: 6242848 doi: 10.1038/s41598-018-35346-y
Gervason, S. et al. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat. Commun. 10(1), 3566 (2019).
pubmed: 31395877 pmcid: 6687725 doi: 10.1038/s41467-019-11470-9
Xia, H. et al. Novel frataxin isoforms may contribute to the pathological mechanism of Friedreich ataxia. PLoS One. 7(10), e47847 (2012).
pubmed: 23082224 pmcid: 3474739 doi: 10.1371/journal.pone.0047847
FA Clinical Outcome Measures (FA-COMS). [research study] Children's Hospital of Philadelphia2017 [updated April 1, 2021; cited 2021]; Available from: https://clinicaltrials.gov/ct2/show/NCT03090789 .
Sacca, F. et al. A combined nucleic acid and protein analysis in Friedreich ataxia: Implications for diagnosis, pathogenesis and clinical trial design. PLoS One. 6(3), e17627 (2011).
pubmed: 21412413 pmcid: 3055871 doi: 10.1371/journal.pone.0017627
Anjomani Virmouni, S. et al. A novel GAA-repeat-expansion-based mouse model of Friedreich’s ataxia. Dis Model Mech. 8(3), 225–235 (2015).
pubmed: 25681319 pmcid: 4348561
Long, A. et al. Somatic instability of the expanded GAA repeats in Friedreich’s ataxia. PLoS One. 12(12), e0189990 (2017).
pubmed: 29261783 pmcid: 5736210 doi: 10.1371/journal.pone.0189990
Clark, R. M. et al. The GAA triplet-repeat is unstable in the context of the human FXN locus and displays age-dependent expansions in cerebellum and DRG in a transgenic mouse model. Hum. Genet. 120(5), 633–640 (2007).
pubmed: 17024371 doi: 10.1007/s00439-006-0249-3
Al-Mahdawi, S. et al. GAA repeat instability in Friedreich ataxia YAC transgenic mice. Genomics 84(2), 301–310 (2004).
pubmed: 15233994 doi: 10.1016/j.ygeno.2004.04.003
Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44(12), 5615–5628 (2016).
pubmed: 26969735 pmcid: 4937303 doi: 10.1093/nar/gkw159
Schmucker, S., Argentini, M., Carelle-Calmels, N., Martelli, A. & Puccio, H. The in vivo mitochondrial two-step maturation of human frataxin. Hum. Mol. Genet. 17(22), 3521–3531 (2008).
pubmed: 18725397 doi: 10.1093/hmg/ddn244
Condo, I. et al. In vivo maturation of human frataxin. Hum. Mol. Genet. 16(13), 1534–1540 (2007).
pubmed: 17468497 doi: 10.1093/hmg/ddm102
Acquaviva, F. et al. Extra-mitochondrial localisation of frataxin and its association with IscU1 during enterocyte-like differentiation of the human colon adenocarcinoma cell line Caco-2. J. Cell. Sci. 118(Pt 17), 3917–24 (2005).
pubmed: 16091420 doi: 10.1242/jcs.02516
Condo, I. et al. Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin. Hum. Mol. Genet. 19(7), 1221–1229 (2010).
pubmed: 20053667 doi: 10.1093/hmg/ddp592
Condo, I., Ventura, N., Malisan, F., Tomassini, B. & Testi, R. A pool of extramitochondrial frataxin that promotes cell survival. J. Biol. Chem. 281(24), 16750–16756 (2006).
pubmed: 16608849 doi: 10.1074/jbc.M511960200
Agro, M. & Diaz-Nido, J. Effect of mitochondrial and cytosolic FXN isoform expression on mitochondrial dynamics and metabolism. Int. J. Mol. Sci. 21(21), 8251 (2020).
pmcid: 7662637 doi: 10.3390/ijms21218251
Rodden, L. N., Gilliam, K. M., Lam, C., Lynch, D. R. & Bidichandani, S. I. Epigenetic heterogeneity in Friedreich ataxia underlies variable FXN reactivation. Front. Neurosci. 15, 752921 (2021).
pubmed: 34899161 pmcid: 8655727 doi: 10.3389/fnins.2021.752921
Bidichandani, S. I., Ashizawa, T. & Patel, P. I. Atypical Friedreich ataxia caused by compound heterozygosity for a novel missense mutation and the GAA triplet-repeat expansion. Am. J. Hum. Genet. 60(5), 1251–1256 (1997).
pubmed: 9150176 pmcid: 1712428
Cossee, M. et al. Friedreich’s ataxia: Point mutations and clinical presentation of compound heterozygotes. Ann. Neurol. 45(2), 200–206 (1999).
pubmed: 9989622 doi: 10.1002/1531-8249(199902)45:2<200::AID-ANA10>3.0.CO;2-U
Forrest, S. M. et al. The correlation of clinical phenotype in Friedreich ataxia with the site of point mutations in the FRDA gene. Neurogenetics 1(4), 253–257 (1998).
pubmed: 10732799 doi: 10.1007/s100480050037
Zuhlke, C. H. et al. Extension of the mutation spectrum in Friedreich’s ataxia: Detection of an exon deletion and novel missense mutations. Eur. J. Hum. Genet. 12(11), 979–982 (2004).
pubmed: 15340363 doi: 10.1038/sj.ejhg.5201257
Galea, C. A. et al. Compound heterozygous FXN mutations and clinical outcome in Friedreich ataxia. Ann. Neurol. 79(3), 485–495 (2016).
pubmed: 26704351 doi: 10.1002/ana.24595
Vyas, P. M. et al. A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum. Mol. Genet. 21(6), 1230–1247 (2012).
pubmed: 22113996 doi: 10.1093/hmg/ddr554
Perdomini, M. et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat. Med. 20(5), 542–547 (2014).
pubmed: 24705334 doi: 10.1038/nm.3510
Piguet, F. et al. Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. Mol. Ther. 26(8), 1940–1952 (2018).
pubmed: 29853274 pmcid: 6094869 doi: 10.1016/j.ymthe.2018.05.006
Li, J. et al. Defining transcription regulatory elements in the human Frataxin gene: Implications for gene therapy. Hum. Gene Ther. 31(15–16), 839–851 (2020).
pubmed: 32527155 pmcid: 7462031 doi: 10.1089/hum.2020.053
Li, L., Matsui, M. & Corey, D. R. Activating frataxin expression by repeat-targeted nucleic acids. Nat. Commun. 4(7), 10606 (2016).
doi: 10.1038/ncomms10606
Libri, V. et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: An exploratory, open-label, dose-escalation study. Lancet 384(9942), 504–513 (2014).
pubmed: 24794816 doi: 10.1016/S0140-6736(14)60382-2
Dionisi, C., Rai, M., Chazalon, M., Schiffmann, S. N. & Pandolfo, M. Primary proprioceptive neurons from human induced pluripotent stem cells: A cell model for afferent ataxias. Sci. Rep. 10(1), 7752 (2020).
pubmed: 32385372 pmcid: 7210273 doi: 10.1038/s41598-020-64831-6
de Jonge, H. J. et al. Evidence based selection of housekeeping genes. PLoS One 2(9), e898 (2007).
pubmed: 17878933 pmcid: 1976390 doi: 10.1371/journal.pone.0000898
Yu, Y. Resveratrol treatment improves plasma and blood glucose concentration and lipid metabolism in high-fat-fed C57BL/6J mice. Eur. Food Res. Technol. 242, 1849–1856 (2016).
doi: 10.1007/s00217-016-2684-2
Guo, L. et al. Liquid chromatography-high resolution mass spectrometry analysis of platelet Frataxin as a protein biomarker for the rare disease Friedreich’s ataxia. Anal. Chem. 90(3), 2216–2223 (2018).
pubmed: 29272104 pmcid: 5817373 doi: 10.1021/acs.analchem.7b04590
Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42(Web Server issue), W401–W407 (2014).
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods. 11(8), 783–784 (2014).
pubmed: 25075903 pmcid: 4486245 doi: 10.1038/nmeth.3047
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

Auteurs

Layne N Rodden (LN)

Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA.
Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

Kaitlyn M Gilliam (KM)

Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA.

Christina Lam (C)

Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA.

Teerapat Rojsajjakul (T)

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Clementina Mesaros (C)

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Chiara Dionisi (C)

Université Libre de Bruxelles (ULB), Brussels, Belgium.

Mark Pook (M)

Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.

Massimo Pandolfo (M)

Université Libre de Bruxelles (ULB), Brussels, Belgium.
Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.

David R Lynch (DR)

Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Ian A Blair (IA)

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Sanjay I Bidichandani (SI)

Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA. Sanjay-Bidichandani@ouhsc.edu.
Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. Sanjay-Bidichandani@ouhsc.edu.
Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. Sanjay-Bidichandani@ouhsc.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH